

CONTENTS

1. Introduction	1
How to attack air-pollution control problems	3
Air pollution control	13
Using chemical-resistant masonry in air-pollution-control equipment	18
Controlling fugitive emissions	24
2. Air Pollution Instrumentation	39
Instruments for environmental monitoring	41
Sampling and analyzing air pollution sources	53
Air-pollution instrumentation	67
Online instruments expedite emissions test	71
Analyze stack gases via sampling or optically, in place	75
Continuous source monitoring	80
Tracer-gas system determines flow volume of flue gases	83
CO ₂ measurements can correct for stack-gas dilution	87
3. Particulate Collectors	91
a. Introduction	
Gas/solid separations	93
Removing particulates from gases	105
Controlling fine particles	113
Predicting efficiency of fine particle collectors	121
b. Particulate Scrubbers	
How to choose a particulate scrubber	125
Practical process design of particulate scrubbers	140
Halt corrosion in particulate scrubbers	145
Maintaining venturi-tray scrubbers	149
Get better performance from particulate scrubbers:	154
Upgrading existing particulate scrubbers	154
Troubleshooting wet scrubbers	161
c. Dust Collectors	
How to choose a cyclone dust collector	166
New design approach boosts cyclone efficiency	175
Selecting, installing and maintaining cyclone dust collectors	184
Calculator program solves cyclone efficiency equations	193
How to specify pulse-jet filters	197
Cooling hot gases before baghouse filtration	201
Baghouses: separating and collecting industrial dusts	205
Baghouses: selecting, specifying and testing industrial dust collectors	218

d. Electrostatic Precipitators	
Selecting and specifying electrostatic precipitators	228
Electrostatic precipitators in industry	243
Electrostatic precipitators: How they are used in the CPI	251
Improving electrostatic precipitator performance	255
Tuning electrostatic precipitators	255
Specifying mechanical design of electrostatic precipitators	258
4. Removal of Gaseous Pollutants	261
Equipment for controlling gaseous pollutants	263
Choosing a flue-gas desulfurization system	268
Diffusivities streamline wet scrubber design	274
Estimating acid dewpoints in stack gases	278
Automatic control of reagent feed boosts wet-scrubber efficiency	282
Dry scrubbing looms large in SO ₂ cleanup plans	285
How to rate alloys for SO ₂ scrubbers	287
Index	293