

Introduction	1
1.1.1 Biodegradation – Nature's Art of Recycling	2
1.1.2 Anaerobic Digestion (AD)	4
1.1.3 Sustainable Biomethanation	5
1.2 Anaerobic Co-digestion (AcD)	5
1.2.1 Zero Waste to Zero Carbon Emission Technology	6
1.2.2 Alternative Feedstocks	6
1.2.3 Microbiological Aspects	8
1.2.4 Strategies for Inoculum Development	8
1.2.5 Real-Time Monitoring of AcD	9
1.2.5.1 The pH Fluctuations	10
1.2.5.2 Carbon–Nitrogen Content	11
1.2.5.3 Temperature	11
1.2.5.4 Volatile Fatty Acids	12
1.2.5.5 Ammonia	12
1.2.5.6 Organic Loading Rate	12
1.3 Digester Designs	13
1.4 Digestate/Spent Slurry	14
1.5 Conclusion	15
References	15

Contents

Foreword *xxvii*

Preface *xxix*

Part I Modern Perspective of Zero Waste Drives 1

1	Anaerobic Co-digestion as a Smart Approach for Enhanced Biogas Production and Simultaneous Treatment of Different Wastes <i>3</i>
<i>S. Bharathi and B. J. Yogesh</i>	
1.1	Introduction <i>3</i>
1.1.1	Biodegradation – Nature's Art of Recycling <i>3</i>
1.1.2	Anaerobic Digestion (AD) <i>4</i>
1.1.3	Sustainable Biomethanation <i>5</i>
1.2	Anaerobic Co-digestion (AcD) <i>5</i>
1.2.1	Zero Waste to Zero Carbon Emission Technology <i>6</i>
1.2.2	Alternative Feedstocks <i>6</i>
1.2.3	Microbiological Aspects <i>8</i>
1.2.4	Strategies for Inoculum Development <i>8</i>
1.2.5	Real-Time Monitoring of AcD <i>9</i>
1.2.5.1	The pH Fluctuations <i>10</i>
1.2.5.2	Carbon–Nitrogen Content <i>11</i>
1.2.5.3	Temperature <i>11</i>
1.2.5.4	Volatile Fatty Acids <i>12</i>
1.2.5.5	Ammonia <i>12</i>
1.2.5.6	Organic Loading Rate <i>12</i>
1.3	Digester Designs <i>13</i>
1.4	Digestate/Spent Slurry <i>14</i>
1.5	Conclusion <i>15</i>
	References <i>15</i>

2	Integrated Approaches for the Production of Biodegradable Plastics and Bioenergy from Waste	19
	<i>Chandan Kumar Sahu, Mukta Hugar, and Ravi Kumar Kadeppagari</i>	
2.1	Introduction	19
2.2	Food Waste for the Production of Biodegradable Plastics and Biogas	19
2.2.1	Biodegradable Plastics from Food Waste	20
2.2.2	Food Waste and Bioenergy	21
2.2.2.1	Ethanol from Food Waste	21
2.2.2.2	Food Waste to Biohydrogen	21
2.2.2.3	Production of Biogas from Food Waste	21
2.3	Dairy and Milk Waste for the Production of Biodegradable Plastics and Biogas	22
2.3.1	Biodegradable Plastics and Dairy Waste	22
2.3.2	PHB Production in Fermenter	22
2.3.3	Bioenergy from Dairy and Milk Waste	22
2.4	Sugar and Starch Waste for the Production of Biodegradable Plastics and Biogas	23
2.4.1	Sugar Waste	23
2.4.1.1	Sugar Waste and PHA	23
2.4.1.2	Bioenergy from Sugar Waste	24
2.4.2	Starch Waste	24
2.4.2.1	Biodegradable Plastics and Starch Waste	25
2.4.2.2	Bioenergy from Starch Waste	25
2.5	Wastewater for the Production of Biodegradable Plastics and Bioenergy	25
2.5.1	Biodegradable Plastics from Wastewater	26
2.5.1.1	Production of PHA from Wastewater	26
2.5.1.2	Production of PHB	26
2.5.2	Production of Bioenergy	26
2.6	Integrated Approaches for the Production of Biodegradable Plastics and Bioenergy from Waste	27
2.7	Conclusions	28
	References	28
3	Immobilized Enzymes for Bioconversion of Waste to Wealth	33
	<i>Angitha Balan, Vaisiri V. Murthy, and Ravi Kumar Kadeppagari</i>	
3.1	Introduction	33
3.2	Enzymes as Biocatalysts	34
3.3	Immobilization of Enzymes	35
3.3.1	Enzyme Immobilization Methods	35
3.3.1.1	Adsorption	35
3.3.1.2	Covalent Bonding	36
3.3.1.3	Affinity Immobilization	36
3.3.1.4	Entrapment	36

3.3.2	Advantages of Immobilizing Enzymes	37
3.3.2.1	Stabilization	37
3.3.2.2	Flexibility of Bioreactor Design	37
3.3.2.3	Reusability and Recovery	38
3.4	Bioconversion of Waste to Useful Products by Immobilized Enzymes	38
3.4.1	Utilization of Protein Wastes	39
3.4.2	Carbohydrates as Feedstock	39
3.4.3	Utilization of Polysaccharides	40
3.4.4	Lipids as Substrates	41
3.5	Applications of Nanotechnology for the Immobilization of Enzymes and Bioconversion	41
3.6	Challenges and Opportunities	43
	Acknowledgments	43
	References	44

Part II Bioremediation for Zero Waste 47

4	Bioremediation of Toxic Dyes for Zero Waste	49
	<i>Venkata Krishna Bayineni</i>	
4.1	Introduction	49
4.2	Background to Dye(s)	50
4.3	The Toxicity of Dye(s)	50
4.4	Bioremediation Methods	51
4.4.1	Types of Approaches: <i>Ex situ</i> and <i>In situ</i>	51
4.4.2	Microbial Remediation	52
4.4.2.1	Aerobic Treatment	52
4.4.2.2	Anaerobic Treatment	52
4.4.2.3	Aerobic-Anaerobic Treatment	52
4.4.3	Decolorization and Degradation of Dyes by Fungi	53
4.4.4	Decolorization and Degradation of Dyes by Yeast	53
4.4.5	Decolorization and Degradation of Dyes by Algae	53
4.4.6	Bacterial Decolorization and Degradation of Dyes	54
4.4.6.1	Factors Affecting Dye Decolorization and Degradation	54
4.4.7	Microbial Decolorization and Degradation Mechanisms	58
4.4.7.1	Biosorption	58
4.4.7.2	Enzymatic Degradation	58
4.4.8	Decolorization and Degradation of Dyes by Plants (Phytoremediation)	58
4.4.8.1	Plant Mechanism for Treating Textile Dyes and Wastewater	60
4.4.8.2	Advantages of Phytoremediation	60
4.4.9	Integrated Biological, Physical, and Chemical Treatment Methods	60
4.4.10	rDNA Technology	60
4.4.11	Enzyme-Mediated Dye Removal	62
4.4.12	Immobilization Techniques	62

4.5	Conclusion	63
	References	63
5	Bioremediation of Heavy Metals	67
	<i>Tanmoy Paul and Nimai C. Saha</i>	
5.1	Introduction	67
5.2	Ubiquitous Heavy Metal Contamination – The Global Scenario	68
5.3	Health Hazards from Heavy Metal Pollution	69
5.4	Decontaminating Heavy Metals – The Conventional Strategies	71
5.5	Bioremediation – The Emerging Sustainable Strategy	72
5.5.1	Intervention of Metal Contamination by Microbial Adaptation	72
5.5.1.1	Genetic Circuitry Involved in Microbial Bioremediation	74
5.5.1.2	Different Heavy Metal–Resistant Mechanisms	74
5.5.2	Plant-Assisted Bioremediation (Phytoremediation)	75
5.5.3	Algae-Assisted Bioremediation (Phycoremediation)	77
5.5.4	Fungi-Assisted Bioremediation (Mycoremediation)	77
5.6	Conclusion	78
	References	79
6	Bioremediation of Pesticides Containing Soil and Water	83
	<i>Veena S. More, Allwin Ebinesar Jacob Samuel Sehar, Anagha P. Sheshadri, Sangeetha Rajanna, Anantharaju Kurupalya Shivram, Aneesa Fasim, Archana Rao, Prakruthi Acharya, Sikandar Mulla, and Sunil S. More</i>	
6.1	Introduction	83
6.2	Pesticide Biomagnification and Consequences	84
6.3	Ill Effects of Biomagnification	84
6.4	Bioremediation	85
6.5	Methods Used in Bioremediation Process	86
6.5.1	<i>In Situ</i> Method	87
6.5.1.1	Bioaugmentation	87
6.5.1.2	Bioventing	87
6.5.1.3	Biosparging	87
6.5.1.4	Biostimulation	87
6.5.2	<i>Ex Situ</i> Methods	87
6.5.2.1	Composting	87
6.5.2.2	Land farming	88
6.5.2.3	Biopiles	88
6.5.2.4	Bioreactors	88
6.6	Bioremediation Process Using Biological Mediators	88
6.6.1	Bacterial Remediation	88
6.6.2	Fungal Remediation	89
6.6.3	Phytoremediation	89
6.7	Factors Affecting Bioremediation	90
6.7.1	Soil Type and Soil Moisture	90
6.7.2	Oxygen and Nutrients	90

6.7.3	Temperature and pH	90
6.7.4	Organic Matter	91
6.8	Future Perspectives	91
	References	91

7 Bioremediation of Plastics and Polythene in Marine Water 95

Tarun Gangar and Sanjukta Patra

7.1	Introduction	95
7.2	Plastic Pollution: A Threat to the Marine Ecosystem	96
7.3	Micro- and Nanoplastics	96
7.3.1	Microplastics	97
7.3.1.1	Toxicity of Microplastics	98
7.3.2	Nanoplastics	99
7.4	Microbes Involved in the Degradation of Plastic and Related Polymers	99
7.4.1	Biodegradation of Plastic	99
7.4.1.1	Polyethylene (PE)	100
7.4.1.2	Polyethylene Terephthalate (PET)	101
7.4.1.3	Polystyrene (PS)	101
7.5	Enzymes Responsible for Biodegradation	101
7.6	Mechanism of Biodegradation	102
7.6.1	Formation of Biofilm	102
7.6.2	Biodeterioration	103
7.6.3	Biofragmentation	103
7.6.4	Assimilation	103
7.6.5	Mineralization	104
7.7	Biotechnology in Plastic Bioremediation	104
7.8	Future Perspectives: Development of More Refined Bioremediation Technologies as a Step Toward Zero Waste Strategy	106
	Acknowledgment	106
	Conflict of Interest	107
	References	107

Part III Biological Degradation Systems 111

8 Microbes and their Consortia as Essential Additives for the Composting of Solid Waste 113

Mansi Rastogi and Sheetal Barapatre

8.1	Introduction	113
8.2	Classification of Solid Waste	113
8.3	Role of Microbes in Composting	114
8.4	Effect of Microbial Consortia on Solid Waste Composting	116
8.5	Benefits of Microbe-Amended Compost	119
	References	119

9	Biodegradation of Plastics by Microorganisms	123
	<i>Md. Anisur R. Mazumder, Md. Fahad Jubayer, and Thottiam V. Ranganathan</i>	
9.1	Introduction	123
9.2	Definition and Classification of Plastics	124
9.2.1	Definition of Plastic	124
9.2.2	Classification	125
9.2.2.1	Based on Biodegradability	125
9.2.2.2	Based on Structure and Thermal Properties	126
9.2.2.3	Characteristics of Different Biodegradable Plastics	126
9.3	Biodegradation of Plastics	128
9.3.1	General Outline	128
9.3.2	Biodegradation Phases and End Products	129
9.3.2.1	Aerobic Biodegradation	129
9.3.2.2	Anaerobic Biodegradation	130
9.3.3	Mechanism of Microbial Degradation of Plastic	130
9.3.4	Factors Affecting Biodegradation of Plastics	131
9.3.5	Microorganisms Involved in the Biodegradation Process	132
9.3.6	Enzymes Involved in the Plastic Biodegradation	133
9.3.6.1	Cutinases (EC 3.1.1.74)	135
9.3.6.2	Lipases (EC 3.1.1.3)	135
9.3.6.3	Carboxylesterases (EC 3.1.1.1)	135
9.3.6.4	Proteases	135
9.3.6.5	Lignin Modifying Enzymes	136
9.4	Current Trends and Future Prospects	136
	List of Abbreviations	137
	References	138
10	Enzyme Technology for the Degradation of Lignocellulosic Waste	143
	<i>Swarna Haldar and Soumitra Banerjee</i>	
10.1	Introduction	143
10.2	Enzymes Required for the Degradation of Lignocellulosic Waste	144
10.2.1	Degradation of Cellulose	144
10.2.1.1	Microbial Production of Cellulase	144
10.2.1.2	Enzymes Responsible for Cellulose Degradation	145
10.2.1.3	Physical Pre-treatments to Break down Cellulose	145
10.2.2	Degradation of Hemicellulose	146
10.2.2.1	Enzymes Responsible for Degradation of Hemicellulose	146
10.2.2.2	Microbial Production of Hemicellulases	147
10.2.2.3	Physical Pre-treatments to Break down Hemicellulose	147
10.2.3	Degradation of Lignin	148
10.2.3.1	Microbial Production of Lignin Degrading Enzymes	148
10.2.3.2	Enzymes Responsible for the Degradation of Lignin	148
10.2.4	Degradation of Pectin	149
10.3	Utilizing Enzymes for the Degradation of Lignocellulosic Waste	150

10.4	Conclusion	150
	References	150
11	Usage of Microalgae: A Sustainable Approach to Wastewater Treatment	<i>Kumudini B. Satyan, Michael V. L. Chhandama, and Dhanya V. Ranjit</i>
11.1	Introduction	155
11.1.1	Microalgae	156
11.1.2	Composition of Wastewater	157
11.2	Microalgae for Wastewater Treatment	158
11.2.1	Biological Oxygen Demand (BOD)	159
11.2.2	Chemical Oxygen Demand (COD)	159
11.2.3	Nutrients (Nitrogen and Phosphorus)	160
11.2.4	Heavy Metals	160
11.2.5	Xenobiotic Compounds	161
11.3	Cultivation of Microalgae in Wastewater	162
11.3.1	Factors Affecting the Growth of Microalgae	162
11.3.1.1	TN:TP Ratio	162
11.3.1.2	pH	162
11.3.1.3	Light	162
11.3.2	Algal Culture Systems	163
11.3.2.1	Open Systems	163
11.3.2.2	Closed Systems	164
11.4	Algae as a Source of Bioenergy	164
11.4.1	Biodiesel from Microalgae	165
11.4.2	Bioethanol from Microalgae	165
11.4.3	Biomethane from Microalgae	165
11.4.4	Hydrogen Production	165
11.4.5	Microbial Fuel Cells	166
11.5	Conclusion	166
	References	166
Part IV Bioleaching and Biosorption of Waste: Approaches and Utilization 171		
12	Microbes and Agri-Food Waste as Novel Sources of Biosorbents	<i>Simranjeet Singh, Praveen C. Ramamurthy, Vijay Kumar, Dhriti Kapoor, Vaishali Dhaka, and Joginder Singh</i>
12.1	Introduction	173
12.2	Conventional Methods for Agri-Food Waste Treatment	175
12.3	Application of the Biosorption Processes	176
12.3.1	Removal of Inorganic Pollutants	176
12.3.2	Removal of Organic Pollutants	177

12.4	Use of Genetically Engineered Microorganisms and Agri-Food Waste	178
12.5	Biosorption Potential of Microbes and Agri-Food Waste	179
12.6	Modification, Parameter Optimization, and Recovery	180
12.6.1	Modification	181
12.6.2	Parameters	182
12.6.3	Recovery	182
12.7	Immobilization of Biosorbent	182
12.8	Conclusions	183
	References	185
13	Biosorption of Heavy Metals and Metal-Complexed Dyes Under the Influence of Various Physicochemical Parameters	<i>189</i>
	<i>Allwin Ebinesar Jacob Samuel Sehar, Veena S. More, Amrutha Gudibanda Ramesh, and Sunil S. More</i>	
13.1	Introduction	189
13.2	Mechanisms Involved in Biosorption of Toxic Heavy Metal Ions and Dyes	191
13.3	Chemistry of Heavy Metals in Water	191
13.4	Chemistry of Metal-Complexed Dyes	192
13.5	Microbial Species Used for the Removal of Metals and Metal-Complexed Dyes	192
13.5.1	Biosorption of Zinc Using Bacteria	192
13.5.2	Biosorption of Heavy Metals by Algae	193
13.5.3	Removal of Toxic Heavy Metals by Fungi	194
13.5.4	Biosorption of Heavy Metals Using Yeast	194
13.6	Industrial Application on the Biosorption of Heavy Metals	195
13.6.1	Biosorption of Heavy Metals Using Fluidized Bed Reactor	195
13.6.2	Biosorption of Heavy Metals by Using Packed Bed Reactors	197
13.7	Biosorption of Reactive Dyes	198
13.8	Metal-Complexed Dyes	199
13.9	Biosorption of Metal-Complexed Dyes	200
13.10	Conclusion	203
	References	203
14	Recovery of Precious Metals from Electronic and Other Secondary Solid Waste by Bioleaching Approach	<i>207</i>
	<i>Dayanand Peter, Leonard Shruti Arputha Sakayaraj, and Thottiam Vasudevan Ranganathan</i>	
14.1	Introduction	207
14.2	What Is Bioleaching?	208
14.2.1	Mechanism of Bioleaching	208
14.2.2	Industrial Processes of Bioleaching	209
14.2.3	Factors Affecting Bioleaching	209

14.2.4	Advantages of Bioleaching Over Other Methods	210
14.2.5	Limitation of Bioleaching Over Other Methods	210
14.3	E-Waste, What Are They?	210
14.3.1	E-Waste Production Scale	211
14.3.2	Pollution Caused by E-Waste	211
14.3.3	General Methods of E-Waste Treatment	212
14.4	Role of Microbes in Bioleaching of E-Waste	212
14.4.1	Bacteria	212
14.4.2	Fungi	213
14.4.3	Actinobacteria and Cyanogenic Organisms	213
14.5	Application of Bioleaching for Recovery of Individual Metals	214
14.5.1	Gold	214
14.5.2	Silver	215
14.5.3	Copper	215
14.5.4	Nickel	215
14.6	Large-Scale Bioleaching of E-Waste	215
14.7	Future Aspects	215
	List of Abbreviations	216
	References	216

Part V Bioreactors for Zero Waste 219

15	Photobiological Reactors for the Degradation of Harmful Compounds in Wastewaters	221
	<i>Naveen B. Kilaru, Nelluri K. Durga Devi, and Kondepudi Haritha</i>	
15.1	Introduction	221
15.2	Photobiological Agents and Methods Used in PhotoBiological Reactors	222
15.2.1	Microbes Acting as Photobiological Agents in Various Photobiological Reactors for the Remediation of Wastewater	222
15.2.1.1	Olive Mill Wastewater Treatment by Immobilized Cells of <i>Aspergillus niger</i>	222
15.2.1.2	Isolation of Alkane-Degrading Bacteria from Petroleum Tank Wastewater	224
15.2.1.3	Development of Microbubble Aerator for Wastewater Treatment by Means of Aerobic Activated Sludge	224
15.2.1.4	Wastewater Produced from an Oilfield and Incessant Treatment with an Oil-Degrading Bacterium	225
15.2.1.5	Pepper Mild Mottle Virus (a Plant Pathogen) as an Apt to Enteric Virus	225
15.2.1.6	Cyanobacteria as a Bio-resource in Making of Bio-fertilizer and Biofuel from Wastewaters	226
15.2.1.7	Bio-sorption of Copper and Lead Ions by Surplus Beer Yeast	226

15.2.1.8 Organization of Lipid-Based Biofuel Production with Waste Treatment Using Oleaginous Bacteria 227

15.2.1.9 Anaerobic Degradation of Textile Dye Bath Effluent Using *Halomonas* Species 228

15.2.1.10 Laccase Production on *Eichhornia crassipes* Biomass 229

15.2.1.11 Algae–Bacteria Interaction in Photo-Bioreactors 230

15.2.1.12 Photo Sequence Batch Reactor 230

15.2.1.13 Detection of *sul1* and *sul2* Genes in Sulfonamide-Resistant Bacteria (SRB) from Sewage, Aquaculture Sources, Animal Wastes, and Hospital Wastewater 231

15.2.1.14 Photosynthetic Bacteria as a Potential Alternative to Meet Sustainable Wastewater Treatment Requirement 231

15.2.1.15 Anaerobic Fermentation for the Production of Short-Chain Fatty Acids by Acidogenic Bacteria 232

15.2.2 Use of Photolytic and Photochemical Methods in Various Photobiological Reactors for Treatment of Wastewater 233

15.2.2.1 Photo-Enhanced Degradation of Contaminants of Emerging Concern in Wastewater 233

15.2.2.2 Pond Reactors (Photo-Fenton Process) 233

15.2.2.3 Photochemical Approaches in the Treatment of Wastewater 235

15.2.3 Membrane Bioreactor 237

15.2.4 Nanotechnology in Photobiological Reactors for the Treatment of Wastewater 238

15.2.4.1 Potential of Nanotechnology in the Treatment of Wastewater 238

15.2.4.2 Moving Bed Biofilm Reactor 238

15.3 Conclusion 238

Acknowledgment 238

References 239

16 Bioreactors for the Production of Industrial Chemicals and Bioenergy Recovery from Waste 241
Gargi Ghoshal

16.1 Introduction 241

16.1.1 Biogas Production 241

16.1.2 Biohydrogen Production 243

16.2 Basic Biohydrogen-Manufacturing Technologies and their Deficiency 244

16.2.1 Direct Biophotolysis 244

16.2.2 Photofermentation 245

16.2.3 Dark Fermentation 245

16.3 Overview of Anaerobic Membrane Bioreactors 246

16.3.1 Challenges and Opportunities 246

16.3.1.1 Membrane Fouling and Energy Demands 246

16.3.1.2 Biohydrogen Generation Rate and Yield 248

16.4 Factors Affecting Biohydrogen Production in AnMBRs 248

16.4.1	Nutrients Availability	248
16.4.2	Hydraulic Retention Time (HRT) and Solid Retention Time (SRT)	250
16.4.3	Design of Biohydrogen-Producing Reactor	250
16.4.4	Substrate Concentration	250
16.4.5	Temperature and pH	251
16.4.6	Seed Culture	251
16.4.7	Hydrogen Partial Pressure	251
16.5	Techniques to Improve Biohydrogen Production	252
16.5.1	Reactor Design and Configuration	252
16.5.2	Microbial Consortia	252
16.6	Environmental and Economic Assessment of BioHydrogen Production in AnMBRs	253
16.7	Future Perspectives of Biohydrogen Production	253
16.8	Products Based on Solid-State Fermenter	253
16.8.1	Bioactive Products	253
16.8.2	Enzymes	254
16.8.3	Organic Acids	255
16.8.4	Biopesticides	256
16.8.5	Aroma Compounds	256
16.8.6	Bio-Pigment Production	257
16.8.7	Miscellaneous Compounds	257
16.9	Koji Fermenters for SSF for Production of Different Chemicals	257
16.10	Recent Research on Biofuel Manufacturing in Bioreactors Other than Biohydrogen	258
	References	259

Part VI Waste2Energy with Biotechnology: Feasibilities and Challenges 263

17	Utilization of Microbial Potential for Bioethanol Production from Lignocellulosic Waste	265
	<i>Manisha Rout, Bithika Sardar, Puneet K. Singh, Ritesh Pattnaik, and Snehasish Mishra</i>	
17.1	Introduction	265
17.1.1	Bioethanol from Different Feed Stocks	265
17.1.2	Sources of Lignocellulosic Biomass	266
17.1.3	Structure and Composition of Lignocellulose	266
17.1.4	Challenges in Bioethanol Production from LCB	267
17.2	Processing of Lignocellulosic Biomass to Ethanol	268
17.3	Biological Pretreatment	271
17.3.1	Potential Microorganisms Involved in Lignin Degradation	272
17.3.1.1	Lignin Degrading Fungi	272
17.3.1.2	Lignin-Degrading Bacteria	274
17.3.2	Mechanism Involved in Delignification	274

17.3.3	Enzymes Involved Biological Pretreatment	274
17.3.3.1	Lignin Peroxidase	275
17.3.3.2	Manganese Peroxidase	275
17.3.3.3	Laccases	275
17.3.3.4	Versatile Peroxidase (VP)	276
17.4	Enzymatic Hydrolysis	276
17.4.1	Hydrolysis of Polysaccharides	277
17.4.1.1	Cellulose and Hemicellulose Degrading Enzymes and Mechanisms	277
17.5	Fermentation	277
17.5.1	Microorganisms Involved in Fermentation	277
17.5.2	Fermentation Process	278
17.5.3	Product Recovery of Bioethanol Post Fermentation	278
17.6	Conclusion and Future Prospects	279
	References	280

18 Advancements in Bio-hydrogen Production from Waste

Biomass 283

Shyamali Sarma and Sankar Chakma

18.1	Introduction	283
18.2	Routes of Production	285
18.2.1	Biophotolysis	285
18.2.2	Dark Fermentation	286
18.2.3	Photo-Fermentation	286
18.3	Biomass as Feedstock for Biohydrogen	286
18.4	Factors Affecting Biohydrogen	288
18.4.1	Influence of pH	288
18.4.2	System Temperature	288
18.4.3	Inoculum	289
18.4.4	Substrates	291
18.4.5	Type of Reactor	291
18.4.5.1	Batch Mode	291
18.4.5.2	Continuous Mode	292
18.4.5.3	Fed Batch	292
18.5	Strategies to Enhance Microbial Hydrogen Production	292
18.5.1	Integrative Process	293
18.5.2	Medium and Process Optimization	293
18.5.3	Metabolic Flux Analysis	294
18.5.4	Application of Ultrasonication	295
18.5.5	Strain Development	295
18.6	Future Perspectives and Conclusion	297
	References	297

19	Reaping of Bio-Energy from Waste Using Microbial Fuel Cell Technology	303
	<i>Senthilkumar Kandasamy, Naveenkumar Manickam, and Samraj Sadhappa</i>	
19.1	Introduction	303
19.1.1	Effects of Industrial Wastes on Environment	304
19.1.1.1	MFC as Energy Source	304
19.1.1.2	Theory of Microbial Fuel Cell	305
19.2	Microbial Fuel Cell Components and Process	306
19.2.1	Mechanism Behind MFC	306
19.2.1.1	Electrode Materials in MFC	308
19.2.1.2	Proton Exchange Membrane	309
19.3	Application of Microbial Fuel Cell to the Social Relevance	309
19.3.1	Electricity Generation	309
19.3.1.1	Bio Hydrogen	310
19.3.2	Wastewater Treatment	310
19.3.3	Biosensor	310
19.4	Conclusion and Future Perspectives	311
	References	311
20	Application of Sustainable Micro-Algal Species in the Production of Bioenergy for Environmental Sustainability	315
	<i>Senthilkumar Kandasamy, Jayabharathi Jayabalan, and Balaji Dhandapani</i>	
20.1	Introduction	315
20.1.1	Classification of Biofuels	315
20.1.2	Microalgae and Bioenergy	316
20.2	Cultivation and Processing of Microalgae	317
20.2.1	Cultivation of Microalgae	319
20.2.1.1	Isolation of Cell Cultures	319
20.2.1.2	Single-Cell Isolation	319
20.2.2	Techniques	319
20.2.2.1	Filtration	319
20.2.2.2	Autoclaving	320
20.2.2.3	Dry Heat	320
20.2.2.4	Pasteurization	320
20.2.3	Culture Conditions	320
20.2.3.1	Temperature	320
20.2.3.2	Lighting	321
20.2.3.3	Culture Media	321
20.2.3.4	pH	321
20.2.3.5	Aeration	321

20.2.4	Culture Methods	321
20.2.4.1	Batch Culture	321
20.2.4.2	Continuous Culture	322
20.2.5	Harvesting Cultures	322
20.2.6	Bioenergy Production Process from Microalgae	322
20.2.6.1	Production Processes	322
20.2.6.2	Biomass Production from Marine Water Algae	322
20.2.7	Large-Scale Production and Processing of Microalgae	324
20.2.7.1	Biomethane Production by Anaerobic Digestion	324
20.2.7.2	Liquid Oil Production by Thermal Liquefaction Process	325
20.2.7.3	Transesterification Process	325
20.2.7.4	Nano-Catalyzed Transesterification Process	325
20.2.7.5	Biohydrogen Production by Photobiological Process	326
20.3	Genetic Engineering for the Improvement of Microalgae	326
20.4	Conclusion and Challenges in Commercializing Microalgae	327
	References	327

Part VII Emerging Technologies (Nano Biotechnology) for Zero Waste 329

21	Nanomaterials and Biopolymers for the Remediation of Polluted Sites	331
	<i>Minchitha K. Umeha, Sadhana Venkatesh, and Swetha Seshagiri</i>	
21.1	Introduction	331
21.2	Water Remediation	332
21.2.1	Application of Nanotechnology for Water Disinfection and Textile Dye Degradation	332
21.2.2	Nanobiopolymers for Water Disinfection and Textile Dye Degradation	334
21.3	Soil Remediation	336
21.3.1	Application of Nanotechnology for Soil Remediation	337
	References	339
22	Biofunctionalized Nanomaterials for Sensing and Bioremediation of Pollutants	343
	<i>Satyam and S. Patra</i>	
22.1	Introduction	343
22.2	Synthesis and Surface Modification Strategies for Nanoparticles	345
22.3	Binding Techniques for Biofunctionalization of Nanoparticles	345
22.3.1	Covalent Functionalization	346
22.3.2	Non-Covalent Functionalization	346
22.3.3	Encapsulation	347
22.3.4	Adsorption	348

22.4	Commonly Functionalized Biomaterials and Their Role in Remediation	348
22.4.1	Biopolymers	348
22.4.2	Surfactants	351
22.4.3	Nucleic Acid	352
22.4.4	Proteins and Peptides	352
22.4.5	Enzymes	353
22.5	Biofunctionalized Nanoparticle-Based Sensors for Environmental Application	354
22.6	Limitation of Biofunctionalized Nanoparticles for Environmental Application	355
22.7	Future Perspective	356
22.8	Conclusion	356
	Acknowledgment	357
	References	357

23 Biogeneration of Valuable Nanomaterials from Food and Other Wastes 361

Amrutha B. Mahanthesh, Swarna Haldar, and Soumitra Banerjee

23.1	Introduction	361
23.2	Green Synthesis of Nanomaterials by Using Food and Agricultural Waste	362
23.3	Synthesis of Bionanoparticles from Food and Agricultural Waste	362
23.3.1	Cellulose Nanomaterials	363
23.3.2	Protein Nanoparticles	364
23.4	Conclusion	365
	Acknowledgments	365
	References	365

24 Biosynthesis of Nanoparticles Using Agriculture and Horticulture Waste 369

Vinayaka B. Shet, Keshava Joshi, Lokeshwari Navalgund, and Ujwal Puttur

24.1	Introduction	369
24.2	Agricultural and Horticultural Waste	370
24.3	Biosynthesis of Nanoparticle	370
24.3.1	Processing of Agriculture and Horticulture Waste	370
24.3.2	Synthesis of Nanoparticles	372
24.3.3	Separation of Nanoparticles	372
24.4	Characterization of Biosynthesized Nanoparticles	373
24.4.1	UV Spectrophotometer	373
24.4.2	Fourier-Transform Infrared Spectroscopy (FTIR)	374
24.4.3	Dynamic Light Scattering (DLS) and Zeta Potential	374
24.4.4	Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM) with Energy-Dispersive X-ray (EDX)	374

24.4.5	X-ray Diffraction (XRD)	375
24.5	Applications of Biosynthesized Nanoparticles	375
24.5.1	Antimicrobial Activity	375
24.5.2	Photocatalysis	375
24.5.3	Removal of Antibiotic from Water	376
24.5.4	Effect on Enzyme Activity	376
24.5.5	Nanofertilizer	376
24.5.6	Radical Scavenging Activity	376
24.5.7	Nano Additives for Fuel	377
	References	377
25	Nanobiotechnology – A Green Solution	379
	<i>Baishakhi De and Tridib K. Goswami</i>	
25.1	Introduction	379
25.2	Nanotechnology and Nanobiotechnology – The Green Processes and Technologies	381
25.2.1	Green Chemistry	382
25.2.1.1	Advantages and Challenges	384
25.3	The Versatile Role of Nanotechnology and Nanobiotechnology	385
25.3.1	Agriculture, Potable Water, and Food Processing	385
25.3.2	Health, Medicine, Drug Delivery, and Pharmaceuticals	388
25.3.3	Automobile, Aircraft, Space Travel	389
25.3.4	Sustainable Energy, Building Technology	389
25.3.5	Society and Education	390
25.4	Nanotechnologies in Waste Reduction and Management	390
25.5	Conclusion	393
	References	393
26	Novel Biotechnological Approaches for Removal of Emerging Contaminants	397
	<i>Sangeetha Gandhi Sivasubramaniyan, Senthilkumar Kandasamy, and Naveen Kumar Manickam</i>	
26.1	Introduction	397
26.2	Classification of Emerging Contaminants	397
26.2.1	Microfibers and Microplastics	398
26.2.2	Pharmaceutical Contaminants	398
26.2.3	Personal Care Products and Its Contaminants	398
26.2.4	Inorganic Metals in Foods and Water	399
26.2.5	Perfluorinated Compounds	399
26.2.6	Disinfection Byproducts	399
26.3	Various Sources of ECs	399
26.3.1	Deposition of Solid and Liquid Waste on Land	399
26.3.2	Deposition of Solid and Liquid Waste into the Water Sources	400
26.4	Need of Removal of ECs	400
26.5	Methods of Treatment of EC	400

26.5.1	Physical Methods	400
26.5.2	Chemical Methods	401
26.5.3	Biotechnological Approach	401
26.6	Biotechnological Approaches for the Removal of ECs	401
26.6.1	Digestion by Membrane Bioreactor	401
26.6.2	Enzymatic Treatment	401
26.6.3	Biofiltration	402
26.6.4	Bioremediation	402
26.6.4.1	Bioaugmentation	403
26.6.4.2	Bioreactors	403
26.6.4.3	Biostimulation	404
26.6.4.4	Bioventing	404
26.6.4.5	Composting	404
26.6.4.6	Land Farming/Land Treatment	405
26.6.4.7	Biopiling	405
26.6.5	Phytoremediation	405
26.6.5.1	Phytoextraction and Phytoaccumulation	406
26.6.5.2	Phytostabilization	406
26.6.5.3	Phytovolatilization	406
26.6.5.4	Phytofiltration	406
26.6.5.5	Phytodegradation	406
26.7	Conclusion	406
	References	407

Part VIII Economics and Commercialization of Zero Waste Biotechnologies 409

27	Bioconversion of Waste to Wealth as Circular Bioeconomy Approach	411
	<i>Dayanand Peter, Jaya Rathinam, and Ranganathan T. Vasudevan</i>	
27.1	Introduction	411
27.1.1	Circular Economy	411
27.1.2	Bioeconomy	412
27.1.3	Circular Bioeconomy	412
27.2	Biovalorization of Organic Waste	413
27.2.1	Extraction of Bioactives	413
27.2.2	Bioenergy Production	413
27.3	Bioeconomy Waste Production and Management	414
27.4	Concerns About Managing Food Waste in Achieving Circular Bioeconomy Policies	416
27.5	Economics of Bioeconomy	417
27.6	Entrepreneurship in Bioeconomy	417
27.6.1	Current Trends in Bioeconomy	418
27.7	Conclusion	418

	List of Abbreviations	418
	References	418
28	Bioconversion of Food Waste to Wealth – Circular Bioeconomy Approach	421
	<i>Rajam Ramasamy and Parthasarathi Subramanian</i>	
28.1	Introduction	421
28.2	Circular Bioeconomy	422
28.3	Food Waste Management Current Practices	424
28.4	Techniques for Bioconversion of Food Waste Toward Circular Bioeconomy Approach	425
28.4.1	Anaerobic Digestion	425
28.4.1.1	Factors Influencing Anaerobic Digestion	427
28.4.2	Microbial Fermentation	429
28.4.3	Enzymatic Treatment	431
28.4.3.1	Enzyme Immobilization Technology	434
28.5	Conclusion	435
	References	435
29	Zero-Waste Biorefineries for Circular Economy	439
	<i>Puneet K. Singh, Pooja Shukla, Sunil K. Verma, Snehasish Mishra, and Pankaj K. Parhi</i>	
29.1	Introduction	439
29.2	Bioenergy, Bioeconomy, and Biorefineries	440
29.3	Bioeconomic Strategies Around the World	443
29.3.1	Malaysia	444
29.3.2	Brazil	444
29.3.3	United States	444
29.3.4	Canada	444
29.3.5	Germany	444
29.3.6	European Union	445
29.3.7	Scenario of Bioeconomy in India	445
29.4	Challenging Factors and Impact on Bioeconomy	445
29.5	Effect of Increased CO ₂ Concentration, Sequestration, and Circular Economy	447
29.6	Carbon Sequestration in India	447
29.7	Methods for CO ₂ Capture	448
29.7.1	Scenario 1. Photosynthetic Bacterial Model for CO ₂ Sequestration	448
29.7.2	Scenario 2. Biochar Model for CO ₂ Sequestration	448
29.7.3	Scenario 3. Biofuels	449
29.7.4	Biological-Based Methods to Capture CO ₂	449
29.7.4.1	Photosynthetic Model	449
29.7.4.2	Substrate in Biorefinery and Carbon Management	449
29.8	Conclusion and Future Approach	451
	References	452

30	Feasibility and Economics of Biobutanol from Lignocellulosic and Starchy Residues	457
	<i>Sandesh Kanthakere</i>	
30.1	Introduction	457
30.2	Opportunities and Future of Zero Waste Biobutanol	458
30.3	Generation of Lignocellulosic and Starchy Wastes	459
30.3.1	Types and Sources of Waste Generation	460
30.3.2	Composition of Lignocellulose and Starchy Residues	461
30.4	Value Added Products from Lignocellulose and Starchy Residues	462
30.4.1	Feasibility of Biobutanol Production from Lignocellulose and Starchy Residues	463
30.4.2	Pretreatment	463
30.4.3	Economics of Biobutanol Production	465
30.5	Conclusion	468
	References	468
31	Critical Issues That Can Underpin the Drive for Sustainable Anaerobic Biorefinery	473
	<i>Spiridon Achinas</i>	
31.1	Introduction	473
31.2	Biogas – An Energy Vector	474
31.3	Anaerobic Biorefinery Approach	475
31.4	Technological Trends and Challenges in the Anaerobic Biorefinery	477
31.4.1	Pretreatment	477
31.4.2	Multistage AD Process	480
31.4.3	Dynamics of Methanogenic Communities	480
31.5	Perspectives Toward the Revitalization of the Anaerobic Biorefineries	482
31.5.1	Reciprocity Between Research, Industry, and Government	482
31.5.2	Transition to the Biogas-based Green Economy	483
31.6	Conclusion	485
	Conflict of Interest	485
	References	485
32	Microbiology of Biogas Production from Food Waste: Current Status, Challenges, and Future Needs	491
	<i>Vanajakshi Vasudeva, Inchara Crasta, and Sandeep N. Mudliar</i>	
32.1	Introduction	491
32.2	Fundamentals for Accomplishing National Biofuel Policy	492
32.3	Significances of Anaerobic Microbiology in Biogas Process	493
32.4	Microbiology and Physico-Chemical Process in AD	493
32.4.1	Hydrolysis and Acidogenesis	493
32.4.2	Acetogenesis	494
32.4.3	Methanogenesis and the Essential Microbial Consortia	495
32.5	Pretreatment	496

32.6	Variations in Anaerobic Digestion	496
32.7	Factors Influencing Biogas Production	497
32.7.1	Temperature	497
32.7.2	pH	497
32.7.3	VFA	498
32.7.4	Microbial Consortia in AD	498
32.7.5	Recirculation of Leachate	499
32.7.6	Ammonia	499
32.7.7	Feedstock Composition	500
32.7.7.1	Protein-Rich Substrate	500
32.7.7.2	Lipid-Rich Substrate	500
32.7.7.3	Carbohydrate-Rich Substrate	500
32.7.8	Trace Element Supplementation	500
32.7.9	Environment/Alkalinity	501
32.7.10	Toxicity	501
32.8	Application of Metagenomics	502
32.9	Conclusions and Future Needs	504
	List of Abbreviations	504
	References	505

Part IX Green and Sustainable future (Zero Waste and Zero Emissions) 507

33	Valorization of Waste Cooking Oil into Biodiesel, Biolubricants, and Other Products	509
	<i>Murlidhar Meghwal, Harita Desai, Sanchita Baisya, Arpita Das, Sanghmitra Gade, Rekha Rani, Kalyan Das, and Ravi Kumar Kadeppagari</i>	
33.1	Introduction	509
33.2	Treatment	510
33.2.1	Chemical Treatment	510
33.2.2	Microbiological and Biotechnological Treatment	511
33.3	Evaluation of Waste Cooking Oil and Valorized Cooking Oil	511
33.4	Versatile Products as an Outcome of Valorized Waste Cooking Oil	512
33.4.1	Biosurfactants and Liquid Detergents	512
33.4.2	Green Chemical Lubricants	513
33.4.3	Biodiesel Production	513
33.4.4	Microbial Lipids	513
33.4.5	Vitamins and Nutraceuticals	514
33.4.6	Biopolymer Synthesis	514
33.4.7	Polyhydroxyalkanoates	515
33.4.8	Feedstock for Microbial Processes	515
33.4.9	Bioasphalt	516
33.4.10	Bioplasticizers	516
33.4.11	Biosolvent	516

33.5	Conclusion	516
	References	517
34	Agri and Food Waste Valorization Through the Production of Biochemicals and Packaging Materials	521
	<i>A. Jagannath and Pooja J. Rao</i>	
34.1	Introduction	521
34.2	Importance	522
34.3	Worldwide Initiatives	522
34.4	Composition-Based Solutions and Approaches	523
34.5	Biochemicals	523
34.5.1	Functional Phytochemicals	524
34.5.2	Industrial-Relevant Biochemicals	524
34.5.3	Enzymes	525
34.5.4	Foods/Feeds/Supplements	525
34.6	Biofuels	526
34.7	Packaging Materials and Bioplastics	526
34.7.1	Scope and Features	527
34.7.2	Polylactic Acid (PLA)	527
34.7.3	Polyhydroxyalkanoates (PHAs)	529
34.7.4	Reinforcement in Bioplastic Properties	529
34.7.4.1	Natural Extract	529
34.7.4.2	Copolymerization	530
34.7.4.3	Green Composites	530
34.8	Green Valorization	531
34.9	Conclusion	531
	References	532
35	Edible Coatings and Films from Agricultural and Marine Food Wastes	543
	<i>C. Naga Deepika, Murlidhar Meghwal, Pramod K. Prabhakar, Anurag Singh, Rekha Rani, and Ravi Kumar Kadeppagari</i>	
35.1	Introduction	543
35.2	Sources of Food Waste	544
35.3	Film/Coating Made from Agri-Food Waste	545
35.3.1	Biopolymers from Fruits and Vegetables Waste	545
35.3.2	Biopolymers from Grain Wastage	546
35.3.3	Bioactive Compounds from Plant Residues	547
35.4	Film/Coating Materials from Marine Biowaste	548
35.4.1	Fish Processing By-products	549
35.4.2	Crustacean By-Products	549
35.5	Film/Coating Formation Methods	550
35.5.1	Solvent Casting	550
35.5.2	Extrusion	551
35.5.3	Dipping Method	552

35.5.4	Spraying Method	552
35.5.5	Spreading Method	552
35.6	Conclusion	552
	References	553
36	Valorization of By-Products of Milk Fat Processing	557
	<i>Menon R. Ravindra, Monika Sharma, Rajesh Krishnegowda, and Amanchi Sangma</i>	
36.1	Introduction	557
36.2	Processing of Milk Fat and Its By-Products	558
36.3	Valorization of Buttermilk	558
36.3.1	Buttermilk as an Ingredient in Food and Dairy Products	559
36.3.1.1	Market Milk	559
36.3.1.2	Dahi	559
36.3.1.3	Yoghurt	559
36.3.1.4	Cheeses	560
36.3.1.5	Indian Traditional Dairy Products	560
36.3.1.6	Buttermilk Ice Cream	560
36.3.1.7	Dairy-Based Beverages	560
36.3.1.8	Probiotic Drinks	561
36.3.1.9	Dried Buttermilk	561
36.3.2	Buttermilk as Encapsulating Agent	561
36.3.3	Buttermilk as a Source of Phospholipids	562
36.4	Valorization of Ghee Residue	562
36.4.1	Utilization of Ghee Residue for Value-Added Products	563
36.4.2	Ghee Residue as an Ingredient in Dairy and Food Industry	563
36.4.2.1	Baked Products	563
36.4.2.2	Chocolate and Confectionery	563
36.4.2.3	Ghee-Residue-Based Flavor Enhancer	564
36.4.2.4	Indian Traditional Sweetmeat	564
36.4.3	Ghee Residue as Animal Feed	564
36.4.4	Ghee Residue as Source of Phospholipids	564
36.5	Conclusion	565
	References	565

Index 569