

Contents

Volume 1

List of Contributors xi

Preface xiii

Part I Introduction 1

1 Metal Oxides and Specific Functional Properties at the Nanoscale 3

Oliver Diwald

1.1 A Cross-Sectional Topic in Materials Science and Technology 3

1.2 Metal Oxides: Bonding and Characteristic Features 5

1.3 Regimes of Size-Dependent Property Changes and Confinement Effects 5

1.4 Distribution of Nanoparticle Properties 7

1.5 Structure and Morphology 9

1.5.1 Confinement and Structural Disorder 9

1.5.2 Surface Free Energy Contributions and Metastability 11

1.5.3 Shape 13

1.6 Electronic Structure and Defects 15

1.6.1 Size-Dependent Defect Formation Energies and Their Impact on Surface Reactivity 17

1.7 Surface Chemistry 19

1.8 Metal Oxide Nanoparticle Ensembles as Dynamic Systems 21

1.9 Organization of This Book 22

References 23

2 Application of Metal Oxide Nanoparticles and their Economic Impact 29

Karl-Heinz Haas

2.1 Introduction 29

2.1.1 Nanomaterials and Nanoobjects 29

2.1.2 Selection of Metal Oxide Nanoparticles 32

2.2 Scientific and Patent Landscape 33

2.3	Types of Metal Oxide Nanoparticles, Properties, and Application Overview	34
2.4	Use Forms of Metal Oxide Nanoparticles and Related Processing	40
2.4.1	Metal Oxide Nanoparticle Powders for Ceramics	40
2.4.2	Metal Oxide Nanoparticle Dispersions	40
2.4.3	Composites	41
2.4.3.1	Polymer Based Composites (Bulk and Coatings)	41
2.4.3.2	Metal Reinforcement	41
2.4.4	Combination with Powders of Micrometer Sized Particles	41
2.5	Application Fields of Metal Oxide Nanoparticles	42
2.5.1	Agriculture	42
2.5.2	Sensors and Analytics	42
2.5.3	Automotive	43
2.5.4	Biomedicine/Dental	43
2.5.4.1	Therapy	44
2.5.5	Catalysis	44
2.5.6	Consumer Products: Cosmetics, Food, Textiles	44
2.5.7	Construction	45
2.5.8	Electronics and Magnetics	45
2.5.9	Energy	46
2.5.10	Environment, Resource Efficiency, Processing	46
2.5.11	Oil Field Chemicals and Petroleum Industries	47
2.5.12	Optics/Optoelectronics and Photonics	47
2.6	Economic Impact	48
2.7	Conclusions and Outlook	51
	Abbreviations	53
	References	53

Part II Particle Synthesis: Principles of Selected Bottom-up Strategies 67

3	Nanoparticle Synthesis in the Gas Phase	69
	<i>Matthias Niederraier, Thomas Schwab, and Oliver Diwald</i>	
3.1	Introduction	69
3.2	Some Key Issues of Particle Formation in the Gas Phase and in Liquids	71
3.3	Gas Phase Chemistry, Particle Dynamics, and Agglomeration	73
3.4	Gas-to-Particle Conversion	77
3.4.1	Physical Processes	80
3.4.2	Chemical Processes	84
3.5	Particle-to-Particle Conversion	91
3.5.1	Approaches and Precursors	92
3.5.2	Particle Formation	94
3.5.3	Experimental Realization	95
3.5.4	Spray Pyrolysis and Flame-Assisted Spray Pyrolysis	96
3.6	Gas Phase Functionalization Approaches	98
	References	100

4 Liquid-Phase Synthesis of Metal Oxide Nanoparticles 109

Andrea Feinle and Nicola Hüsing

- 4.1 Introduction 109
- 4.2 General Aspects 110
- 4.2.1 Liquid-Phase Chemistry 110
- 4.2.2 Nucleation, Growth, and Crystallization 112
- 4.3 Synthetic Procedures 118
- 4.3.1 (Co)Precipitation 118
- 4.3.2 Sol-Gel Processing 121
- 4.3.3 Polyol-Mediated Synthesis/Pechini Method 124
- 4.3.4 Hot-Injection Method 126
- 4.3.5 Hydrothermal/Solvothermal Processing 127
- 4.3.6 Microwave-Assisted Synthesis 130
- 4.3.7 Sonication-Assisted Synthesis 133
- 4.3.8 Synthesis in Confined Spaces 136
- 4.4 Summary 142
- References 142

5 Controlled Impurity Admixture: From Doped Systems to Composites 151

Alessandro Lauria and Markus Niederberger

- 5.1 Introduction 151
- 5.2 Liquid-Phase Synthesis of Doped Metal Oxide Nanoparticles 154
- 5.3 Gas-Phase Synthesis of Doped Metal Oxide Nanoparticles 165
- 5.4 Solid-State Synthesis of Doped Metal Oxide Nanoparticles 168
- 5.5 Phase Segregation: Formation of Heterostructures 169
- 5.6 Core/Shell and Heteromultimers 173
- 5.7 Summary and Conclusions 175
- References 176

Part III Nanoparticle Formulation: A Selection of Processing and Application Routes 185

6 Colloidal Processing 187

Thomas Berger

- 6.1 Towards Complex Shaped and Compositionally Well-Defined Ceramics: The Need for Colloidal Processing 187
- 6.2 Colloidal Processing Fundamentals 189
- 6.2.1 Interparticle Forces 189
- 6.2.1.1 Electric Double Layer Forces 192
- 6.2.1.2 Polymer-Induced Forces 194
- 6.2.2 Forming and Consolidation Techniques 194
- 6.2.2.1 Drained Casting Techniques 195
- 6.2.2.2 Tape-Casting Techniques 195
- 6.2.2.3 Constant Volume Techniques 195
- 6.2.2.4 Drying and Cracking 197
- 6.3 Rheology of Suspensions 197

6.4	Electrostatic Heteroaggregation of Metal Oxide Nanoparticles	202
6.4.1	Modification of Colloidal Stability by Heteroaggregation	202
6.4.2	Structure Evolution upon Heteroaggregation	204
6.4.3	Rheological Properties of Heterocolloids	206
6.4.4	Functional Properties of Heteroaggregates	207
6.5	Ice-Templating-Enabled Porous Ceramic Structures: Impact of Nanoparticles	210
6.5.1	Ice-Templating of Colloidal Particles	210
6.5.2	Capabilities of Metal Oxide Nanoparticles in Ice-Templating	212
6.5.2.1	Optimization of the Mechanical Properties of Green Bodies and Sintered Parts	212
6.5.2.2	Hierarchical Porosity and High Surface Area Materials	215
6.5.2.3	Triple Phase Boundaries Between Percolating Solid Networks and a Hierarchical Pore System	217
6.6	From Colloidal Processing to Nanoparticle Assembly	219
	Nomenclature	222
	List of Abbreviations	224
	References	224

7 Fabrication of Metal Oxide Nanostructures by Materials Printing 229

Petr Dzik, Michal Veselý, and Oliver Diwald

7.1	Introduction	229
7.2	Traditional Coating and Printing Techniques	231
7.3	Inkjet Printing	237
7.3.1	A Brief Introduction into IJP Technology and the Process Scheme	237
7.3.2	Functional Ink Formulation Issues	241
7.3.3	Drop Generation	244
7.3.4	Drop Interaction with the Substrate	245
7.3.5	Drop Drying and Pattern Formation	247
7.3.6	Printing Quality	250
7.3.7	Equipment and Printing Devices	252
7.4	Printing of Metal Oxide Structures: The Materials Aspect	254
7.4.1	Insulating Metal Oxides	254
7.4.2	Semiconducting Metal Oxides	255
7.4.3	Conducting Metal Oxides	256
7.5	Examples for Complex Printed Functional Structures: The Device Aspect	258
7.5.1	Printed Photoelectrochemical Cell	258
7.5.2	Flexible pH Sensors by Large Scale Layer-by-layer Inkjet Printing	261
7.6	Conclusions and Outlook	263
	References	265

8 Nanoscale Sintering 271

Kathy Lu and Kaijie Ning

8.1	Background	271
8.2	Challenges and New Aspects of Nanoparticle Material Sintering	272
8.3	Questionable Nature of Existing Sintering Theories	274
8.4	3D Reconstruction	276
8.4.1	Focused Ion Beam Cross-Sectioning and SEM Imaging	276
8.4.2	X-ray Microtomography	278

8.5	Functions of Pores	281
8.6	Sintering of Small Features	287
8.6.1	New Sintering Questions	287
8.6.2	Role of Pore Number in Small Feature Sintering	289
8.6.3	Grain Boundary Diffusion vs. Grain Boundary Migration in Small Feature Sintering	291
8.6.4	Ceramic Type Effect on Small Feature Sintering	293
8.6.5	Atmosphere Effect on Small Feature Sintering	294
8.7	Summary	297
	Acknowledgment	297
	References	297

Part IV Metal Oxide Nanoparticle Characterization at Different Length Scales 303

9	Structure: Scattering Techniques	305
	<i>Günther J. Redhammer</i>	
9.1	Introduction	305
9.1.1	Scattering and Diffraction	306
9.1.2	What to Learn from a Diffraction Experiment?	307
9.2	Theoretical Background	310
9.2.1	Crystal Lattice, Planes, and Bragg's Law	311
9.2.1.1	Crystal Planes and Interplanar Distance	311
9.2.1.2	The Reciprocal Lattice	312
9.2.1.3	Bragg's Law	313
9.2.2	The Intensity of a Bragg Peak	315
9.2.3	The Profile of a Bragg Peak	317
9.2.3.1	Instrumental Broadening	318
9.2.3.2	Sample Broadening	319
9.2.3.3	Analytical Description of Peak Shapes	321
9.3	Experimental Setup	323
9.3.1	Single vs. Polycrystalline Samples	323
9.3.2	Powder Diffraction Methods	325
9.3.2.1	Reflection Geometry	325
9.3.2.2	Transmission Geometry	327
9.3.2.3	Grazing Incident Diffraction (GID)	328
9.3.2.4	Sample Preparation	330
9.4	Some Selected Applications	331
9.4.1	Qualitative Phase Analysis	331
9.4.2	Quantitative Phase Analysis – The Rietveld Method	333
9.4.3	Microstructure Analysis: Size and Strain	335
9.5	X-ray Diffraction on Magnetite Nanoparticles	338
9.6	Conclusion	340
	Nomenclature	341
	List of Abbreviations	342
	References	343

10	Morphology, Structure, and Chemical Composition: Transmission Electron Microscopy and Elemental Analysis	349
	<i>Joanna Grybos, Paulina Indyka, and Zbigniew Sojka</i>	
10.1	Size, Shape, and Composition of Oxide Nanoparticles	349
10.2	Interaction of the Incident Electrons with a Specimen	350
10.3	The Transmission Electron Microscope	351
10.3.1	Microscope Design and Operation Modes	351
10.3.2	Contrast Type and Image Formation	355
10.3.3	Resolution Limits of TEM Images	359
10.4	Imaging and Analysis of Morphology	360
10.4.1	Sample Preparation	360
10.4.2	Shape Retrieving	361
10.4.2.1	Aligned Nanocrystals	362
10.4.2.2	Randomly Oriented Nanocrystals	364
10.4.3	Particle Size Determination	366
10.5	Crystallographic Phase Identification – Electron Diffraction	367
10.5.1	Bragg Condition – Kinematical and Dynamical Diffraction	368
10.5.2	Selected Area Electron Diffraction (SAED)	369
10.5.3	Nanodiffraction	370
10.6	Chemical Composition Mapping – EDX and EELS Nanospectroscopy	371
10.6.1	Correlating Image with Spectroscopic EDX and EELS Information – Data Cubes	373
10.6.2	Composition Mapping with EDX Spectroscopy	374
10.6.3	Chemical State Imaging with EELS Spectroscopy	377
	Nomenclature	378
	List of Abbreviations	380
	References	381
11	Electronic and Chemical Properties: X-Ray Absorption and Photoemission	383
	<i>Paolo Dolcet and Silvia Gross</i>	
11.1	Introduction and Scope of the Chapter	383
11.2	Basics of X-rays – Matter Interaction	383
11.3	X-Ray Photoelectron Spectroscopy (XPS)	386
11.3.1	Theoretical Background	386
11.3.2	Features and Analysis of X-ray Photoelectron Spectra	391
11.3.3	XPS Investigation of Metal Oxide Nanoparticles and Metal Oxide Colloidal Suspensions	396
11.3.3.1	Solid–Liquid Interfaces and Nanoparticles in Suspension: Liquid-Jet and Ambient Pressure XPS	397
11.3.3.2	Valence Band XPS for the Investigation of Oxides	401
11.3.4	XPS Spectrometer Equipment: Components and Sources	402
11.3.5	Performing XPS Experiments	403
11.3.5.1	Planning of the Analysis and Sample Preparation	403
11.3.6	XPS Qualitative and Quantitative Data Analysis and Fitting	405
11.4	X-ray Absorption Spectroscopy (XAS)	406
11.4.1	X-ray Absorption Theory	406
11.4.2	XAS for the Investigation of Metal Oxide Nanoparticles	412

11.4.2.1	Materials for Oxygen Evolution Reaction	415
11.4.2.2	Point Defects and Ferromagnetism	415
11.4.3	Anatomy of a XAS Beamline	417
11.4.4	The XAS Experiment: Obtaining Beamtime, Sample Preparation	417
11.5	Case Studies for the Combined Use of XPS and XAS in Oxide Analysis	420
11.5.1	XPS and XAS analysis of pure, doped, and mixed oxides and of oxide interfaces	421
11.5.2	XPS and XAS analysis of catalysts	424
11.6	Concluding Remarks: Complementarities and Differences of XPS and XAS	428
	List of Abbreviations	428
	References	429

Volume 2

List of Contributors *xiii*

Preface *xv*

12	Optical Properties: UV/Vis Diffuse Reflectance Spectroscopy and Photoluminescence	435
	<i>Thomas Berger and Annette Trunschke</i>	
13	Vibrational Spectroscopies	483
	<i>Christian Hess</i>	
14	Solid State Magnetic Resonance Spectroscopy of Metal Oxide Nanoparticles	513
	<i>Martin Hartmann and Yamini S. Avadhut</i>	
15	Characterization of Surfaces and Interfaces	557
	<i>Thomas Berger and Oliver Diwald</i>	
16	Adsorption and Chemical Reactivity	593
	<i>Oliver Diwald and Martin Hartmann</i>	
17	Particle Characterization Technology	637
	<i>Alfred P. Weber and Annett Wollmann</i>	
	Part V Characterization of Metal Oxide Nanoparticles with Modelling	673
18	Atomistic Modeling of Oxide Nanoparticles	675
	<i>Keith McKenna</i>	
19	Modeling of Reactions at Oxide Surfaces	693
	<i>Henrik Grönbeck</i>	
20	Mesoscale Modelling of Nanoparticle Formation	711
	<i>Eirini Goudeli</i>	

Part VI Nanoparticles in Biological Environments 735

21 Biological Activity of Metal Oxide Nanoparticles 737
Martin Himly, Mark Geppert, and Albert Duschl

Part VII Metal Oxide Nanoparticles in Applications 761

22 The Properties of Iron Oxide Nanoparticle Pigments 763
Robin Klupp Taylor

23 Zinc Oxide Nanoparticles for Varistors 783
Oliver Diwald

24 Metal Oxide Nanoparticle-Based Conductometric Gas Sensors 809
Thomas Berger

Glossary 835

Index 855