

Contents

Preface	xi
1 Introduction to fluid power	1
1.1. History	1
1.2. Advantages of fluid power systems	3
1.3. Fluids for power transmission	4
1.4. Aeration	8
1.5. Cavitation	15
1.6. High temperature systems	17
1.7. Sources of power	17
1.8. Accumulators and filters	19
1.9. Pump sets	22
1.10. Simple concepts of automatic control	23
1.11. Feedback control systems	23
1.12. Feedback in practice	25
1.13. Some problems associated with fluid power control systems	26
2 Discharge characteristics of servovalve orifices	27
2.1. Introduction	27
2.2. Theoretical determination of the discharge coefficient	30
2.3. Spool valve orifices	30
2.4. Poppet valve orifices	34
2.5. Flapper nozzle valves	34
2.6. Experimental determination of discharge coefficients	35
2.7. Reattached flow in spool valves	40
2.8. Effects of chamber geometry	45
2.9. Poppet valves	46
2.10. Flapper nozzle valves	46
2.11. Short tube orifices	49
2.12. Gas flow through orifices	50

3 Directional control valves	55
3.1. Introduction	55
3.2. Two-way valve	55
3.3. Three-way valves	57
3.4. Four-way valves	58
3.5. Losses in two- and three-position valves—valve ratings	60
3.6. Infinite position valves—Servovalves	61
3.7. Two-way servovalves	61
3.8. Linearisation of valve characteristics	64
3.9. The three-way servovalve	66
3.10. Three-way valve, spool, hydraulic	67
3.11. Three-way valve, pneumatic	69
3.12. The flapper nozzle valve, hydraulic	71
3.13. Flapper nozzle valve, pneumatic	72
3.14. The three-way jet pipe valve	73
3.15. Four-way servovalves	74
3.16. Some comments on the use of valve characteristics	78
3.17. The electric field valve	78
4 Flow forces in valves	81
4.1. Introduction	81
4.2. Steady state flow forces in spool valves	82
4.3. Compensation of flow forces in spool valves	83
4.4. Transient flow forces in spool valves	87
4.5. Flow forces in poppet valves	90
4.6. Forces on flapper nozzle valves	94
5 System dynamics	99
5.1. Introduction	99
5.2. Basic Relationships	99
5.3. A simple system	103
5.4. Controlling elements	104
5.5. Dynamic characteristics	105
5.6. Design example	107
5.7. Fluid transmission lines	110
5.8. Distributed parameter model	111
6 Hydraulic servomechanisms	116
6.1. Introduction	116
6.2. Precision control systems in hydraulics	118
6.3. Effects of oil compressibility	119
6.4. Stability considerations	123
6.5. Determination of optimum response	124
6.6. Response characteristics	126

6.7. Effects of load disturbances	126
6.8. Cavitation in the hydraulic actuator	130
6.9. Effect on underlap on cavitation	133
6.10. Graphical analysis of the closed loop step response	134
6.11. Method of solution	138
7 Electrohydraulic servomechanisms and general aspects of analysis	145
7.1. Introduction	145
7.2. Complete system equations	146
7.3. Simple case	147
7.4. Results from analogue computer study	149
7.5. Practical considerations	153
7.6. Effect of flow forces	153
7.7. More exact simulation	157
8 The small signal response of the hydraulic servo and means of improving performance	162
8.1. Introduction	162
8.2. Characteristics of the threshold region	163
8.3. Methods of improving performance	165
8.4. Computer study of small amplitude response	168
8.5. Further methods of improving performance	172
8.6. Two-stage electrohydraulic valve	180
9 Pneumatic servomechanisms	185
9.1. Introduction	185
9.2. Pneumatic servo	186
9.3. Ram equations	188
9.4. Load sensitivity	191
9.5. Method of stabilisation	192
9.6. Stabilisation using auxiliary tanks	195
9.7. Hot gas servomotors	198
10 Some practical aspects of servo testing and design	201
10.1. Introduction	201
10.2. Position transducers	202
10.3. Recording instruments	204
10.4. System testing	205
10.5. Frequency response equipment	206
10.6. Amplitude response	208
10.7. The servo amplifier	208
10.8. Matching the torque motor to the servo amplifier	209
10.9. Natural frequency calculations in the servo actuator	211
10.10. Performance assessment	214
10.11. Choice of control valve	216

11	Control of pressure	221
11.1.	Introduction	221
11.2.	Applications—hydraulic	224
11.3.	Applications—pneumatic	226
11.4.	Response of spool valves	227
11.5.	Use of flow forces	230
11.6.	Dynamics of pressure control valves	232
12	Speed control	237
12.1.	Pneumatic actuators	237
12.2.	Dynamic analysis of meter-out speed control	245
12.3.	Speed control of hydraulic motors	248
12.4.	Dynamic analysis of hydraulic meter-out control	251
12.5.	Hydropneumatics	253
12.6.	Synchronisation	254
12.7.	Speed control servos	258
13	Fluidics	260
13.1.	Introduction	260
13.2.	Devices without moving parts	260
13.3.	Advantages and disadvantages of non-moving part devices	271
13.4.	Auxiliary equipment	273
14	Boolean algebra and fluid logic	277
14.1.	Introduction	277
14.2.	The language of Boolean algebra	277
14.3.	Some further logic gates and devices	281
14.4.	Manipulation of logic expressions	283
14.5.	A circuit design	286
14.6.	Some special circuits	289
15	Some applications of non-moving part fluidic elements	293
15.1.	Introduction	293
15.2.	Gauging and positioning	294
15.3.	Oscillators and their uses	296
15.4.	Rate measurement	299
15.5.	Control systems	300
15.6.	Sequences and interlocking logic systems	303
16	Sequential circuits	306
16.1.	Introduction	306
16.2.	Unequal loading	307
16.3.	Use of sequence valves	307
16.3.	Programmers	309
16.4.	Direct signal interlocks	311

16.5. Other means of eliminating locked signals	314
16.6. Use of electrics	315
16.7. A simple design technique for sequence circuits	316
16.8. The cascade system	320
16.9. The logic approach to circuit design	324
17 Discontinuously controlled and digital servos	329
17.1. Introduction	329
17.2. Digital to analogue converters	329
17.3. Pulse controls	331
17.4. Digital actuators	334
17.5. On-off controlled system	337
17.6. Oscillating control systems—pulse width modulation	337
17.7. Response improvements using digital techniques	341
17.8. Some phenomena associated with on-off controlled hydraulic servos.	344
Appendix I	
Units and the SI system	351
Appendix II	
Bibliography	355
Index	363