

Contents

Foreword xvii

Part I Enzyme Techniques 1

1	Techniques for Enzyme Purification 3
	<i>Adrie H. Westphal and Willem J. H. van Berkel</i>
1.1	Introduction 3
1.2	Traditional Enzyme Purification 4
1.2.1	Ion Exchange Chromatography 7
1.2.2	Gel Filtration 9
1.2.3	Bio-affinity Chromatography 11
1.2.4	Hydrophobic Interaction Chromatography 14
1.2.5	Hydroxyapatite Chromatography 15
1.3	Example of a Traditional Enzyme Purification Protocol 17
1.4	Purification of Recombinant Enzymes 18
1.4.1	Immobilized Metal Affinity Chromatography 18
1.4.2	Affinity Chromatography with Protein Tags 20
1.5	Column Materials 22
1.6	Conclusions 24
	References 25
2	Enzyme Modification 33
	<i>Antonino Biundo, Patricia Saénz-Méndez, and Tamas Görbe</i>
2.1	Introduction 33
2.2	Practical Approach: Experimental Information, Analytical Methods, Tips and Tricks, and Examples 34
2.2.1	Directed Evolution 34
2.2.1.1	(Ultra)High-Throughput Screening and Selection 35
2.2.1.2	Applications of Directed Evolution Methodology 36
2.2.2	Semi-rational Design 37
2.2.2.1	Applications of Semi-rational Design Methodology 38
2.2.3	<i>De Novo</i> Enzyme Design 39

2.2.3.1	Applications of <i>De Novo</i> Enzyme Design Methodology	40
2.2.4	Rational Enzyme Design	40
2.2.4.1	Applications of Rational Design Methodology	41
2.3	Expectations and Perspectives	49
2.4	Concluding Remarks	50
	References	51
3	Immobilization Techniques for the Preparation of Supported Biocatalysts: Making Better Biocatalysts Through Protein Immobilization	63
	<i>Javier Rocha-Martín, Lorena Betancor, and Fernando López-Gallego</i>	
3.1	Introduction	63
3.2	General Aspects to Optimize Enzyme Immobilization Protocols	64
3.2.1	Carrier Nature	64
3.2.2	Immobilization Chemistry	64
3.2.3	Protein Orientation	64
3.2.4	Multivalence of the Protein Attachment	65
3.2.5	Chemical and Geometrical Congruence	65
3.2.6	Enzyme Spatial Organization	65
3.3	Type of Carriers for Immobilized Proteins	66
3.3.1	Types of Materials	66
3.3.1.1	Organic Materials	66
3.3.1.2	Inorganic Materials	66
3.3.2	Geometry	67
3.3.2.1	Beads	67
3.3.2.2	Monoliths	67
3.3.2.3	Membranes	67
3.3.3	Dimensions	67
3.3.4	Commercially Available Porous Carriers for Enzyme Immobilization	68
3.4	Immobilization Methods and Manners	68
3.5	Evaluation of the Enzyme Immobilization Process	70
3.5.1	Considerations Before Immobilization	71
3.5.1.1	Preparation of the Enzymatic Solution to Be Immobilized	71
3.5.1.2	Stability of the Soluble Enzyme Under Immobilization Conditions	71
3.5.2	Parameters Required to Define an Immobilization Process	71
3.5.2.1	Immobilization Yield	72
3.5.2.2	Expressed Activity or Apparent Activity	72
3.5.2.3	Specific Activity of the Immobilized Biocatalyst	73
3.6	Applied Examples of Immobilized Enzymes	73
3.6.1	Characterization of the Immobilized Biocatalyst	74
3.6.1.1	Determination of the Catalytic Activity of the Final Immobilized Biocatalyst and Maximum Protein Loading Capacity	74
3.6.1.2	Apparent Kinetic Parameters of the Immobilized Enzyme	76
3.6.1.3	Biocatalyst Stability	77
3.6.1.3.1	The Half-life Time of Biocatalysts	78
3.7	Challenges and Opportunities in Enzyme Immobilization	79

3.8	Conclusions	81
	List of Abbreviations	82
	References	82
4	Compartmentalization in Biocatalysis	89
	<i>Robert Kourist and Javier González-Sabín</i>	
4.1	Introduction	89
4.2	Cell as a Compartment	93
4.3	Compartmentalization Using Protein Assemblies	95
4.4	Compartmentalization Using Emulsion and Micellar Systems	96
4.5	Compartmentalization Using Encapsulation	100
4.6	Compartmentalization Using Tea Bags and Thimbles	103
4.7	Separation of Reaction Steps Using Continuous Flow	105
4.8	Conclusions and Prospects	107
	References	108
Part II Enzymes Handling and Applications 113		
5	Promiscuous Activity of Hydrolases	115
	<i>Erika V. M. Orozco and André L. M. Porto</i>	
5.1	Introduction	115
5.2	Catalytic Promiscuity	116
5.3	Hydrolases	117
5.3.1	Applications of Hydrolases to Organic Synthesis	118
5.3.2	Lipases and Their Hydrolysis Mechanism	122
5.3.3	Catalytic Promiscuity of Hydrolases	122
5.3.4	Promiscuous Aldol Reaction Catalyzed by Hydrolases	130
5.3.5	Aldol Reaction Between 4-Cyanobenzaldehyde and Cyclohexanone Catalyzed by Porcine Pancreatic Lipase (PPL-II) and <i>Rhizopus niveus</i> Lipase (RNL)	135
5.4	Conclusions	136
	References	137
6	Enzymes Applied to the Synthesis of Amines	143
	<i>Francesco G. Mutti and Tanja Knaus</i>	
6.1	Introduction	143
6.2	Hydrolases	145
6.2.1	Practical Approaches with Hydrolases	145
6.2.1.1	Kinetic Resolution	145
6.2.1.2	Dynamic Kinetic Resolution	146
6.2.2	Practical Examples with Hydrolases	148
6.2.2.1	Kinetic Resolution of Racemic α -Methylbenzylamine Through the Methoxyacetylation Catalyzed by a Lipase	148
6.2.2.2	Dynamic Kinetic Resolution for the Synthesis of Norsertraline	149
6.3	Amine Oxidases	149
6.3.1	Practical Approaches with Amine Oxidases	150

6.3.1.1	Kinetic Resolution and Deracemization	150
6.3.2	Practical Examples with Amine Oxidases	151
6.3.2.1	One-pot, One-enzyme Oxidative Pictet–Spengler Approach Combined with Deracemization	151
6.3.2.2	Desymmetrization of <i>meso</i> -compounds	152
6.4	Transaminases (or Aminotransferases)	152
6.4.1	Practical Approaches with Transaminases	153
6.4.2	Practical Examples with Transaminases	153
6.4.2.1	Kinetic Resolution and Deracemization	153
6.4.2.2	Asymmetric Synthesis from Prochiral Ketone	155
6.5	Amine Dehydrogenases, Imine Reductases, and Reductive Aminases	155
6.5.1	Practical Approaches with Amine Dehydrogenases, Imine Reductases, and Reductive Aminases	156
6.5.2	Practical Examples with Amine Dehydrogenases, Imine Reductases, and Reductive Aminases	160
6.5.2.1	IRed-Catalyzed Reductive Amination of an Aldehyde Combined with KR of a Racemic Amine	160
6.5.2.2	Asymmetric Reductive Amination Catalyzed by AmDH	162
6.6	Ammonia Lyases	162
6.6.1	Practical Approaches with Ammonia Lyases	163
6.6.1.1	Aspartase, 3-Methylaspartate Ammonia Lyase, and Related Enzymes	163
6.6.1.2	Aromatic Amino Acid Ammonia Lyases and Mutases	165
6.6.2	Practical Examples with Ammonia Lyases	166
6.6.2.1	Chemoenzymatic Synthesis of (<i>S</i>)-2-Indolinecarboxylic Acid	166
6.6.2.2	Synthesis of L-Aspartate from Fumarate	166
6.6.2.3	Enzymatic and Chemoenzymatic Synthesis of Toxin A and Aspergillomarasmine A and B	166
6.7	Pictet–Spenglerases	167
6.7.1	Practical Approaches with Pictet–Spenglerases	167
6.7.2	Practical Examples with Pictet–Spenglerases	169
6.7.2.1	Biocatalytic Synthesis of (<i>R</i>)-Harmicine	169
6.7.2.2	Biocatalytic Synthesis of (<i>S</i>)-Trolline and Analogs	169
6.8	Engineered Cytochrome P450s (Cytochrome “P411”)	169
6.8.1	Practical Approaches with Engineered Cytochrome P450s	170
6.9	Protocols for Selected Reactions	171
6.9.1	Hydrolases	171
6.9.1.1	Kinetic Resolution <i>rac</i> -Methylbenzylamine (<i>rac</i> -1)	171
6.9.1.2	Dynamic Kinetic Resolution of Norsertraline Intermediate (<i>rac</i> -3)	171
6.9.2	Monoamine Oxidases	172
6.9.2.1	Chemoenzymatic Deracemization of Harmicine (<i>rac</i> -8)	172
6.9.3	ω -Transaminases	172
6.9.3.1	Deracemization of Mexiletine (<i>rac</i> -9, Kinetic Resolution, Followed by Formal Reductive Amination)	172
6.9.4	Imine Reductases and Amine Dehydrogenases	172
6.9.4.1	Reductive Amination of Aldehyde (11) with Kinetic Resolution of Amine Nucleophile (<i>rac</i> - <i>trans</i> -12)	172

6.9.4.2	Asymmetric Reductive Amination of Acetophenone (14) Using Amine Dehydrogenase	173
6.9.5	Ammonia Lyases	173
6.9.5.1	Asymmetric Ammonia Addition to 2'-Chlorocinnamic Acid (17)	173
6.9.6	Pictet-Spenglerases	173
6.9.6.1	Asymmetric Pictet-Spengler Reaction with Strictosidine Synthase	173
6.9.7	Engineered Cytochrome P450s	174
6.9.7.1	Intermolecular Alkane C–H Amination Using Cytochrome P411	174
6.10	Conclusions	174
	Acknowledgments	175
	References	175

7 Applications of Oxidoreductases in Synthesis: A Roadmap to Access Value-Added Products 181

Mélanie Hall

7.1	Introduction	181
7.2	Reductive Processes	184
7.2.1	Reduction of C=O Bonds	184
7.2.1.1	Selection of Alcohol Dehydrogenase (ADH) for Stereoselective Reduction Reactions	185
7.2.1.1.1	Absolute Configuration of the Product	185
7.2.1.1.2	Substrate Type	186
7.2.1.1.3	Thermostability	187
7.2.1.1.4	Cofactor Preference	187
7.2.1.1.5	Kits	187
7.2.1.2	Practical Approach	187
7.2.1.2.1	Montelukast	188
7.2.1.2.2	Atorvastatin	189
7.2.1.2.3	Dynamic Kinetic Resolutions	189
7.2.1.2.4	Disproportionation	190
7.2.1.2.5	Redox Isomerization	190
7.2.2	Reduction of C=C Bonds	191
7.2.2.1	Mechanism	191
7.2.2.2	Enzymes and Substrates	193
7.2.2.2.1	Enzymes	193
7.2.2.2.2	Substrates	193
7.2.2.3	Practical Approach	196
7.2.2.3.1	Stereocontrol	196
7.2.2.3.2	(Dynamic) Kinetic Resolution	197
7.3	Oxidative Processes	198
7.3.1	Oxygenations	198
7.3.1.1	Baeyer–Villiger Oxidations	198
7.3.1.1.1	Regiopreference	200
7.3.1.1.2	Stereoselectivity	201
7.3.1.1.3	Practical Approach	203
7.3.1.2	Epoxidation of Alkenes	204

7.3.2	Heteroatom Oxidation	206
7.3.2.1	Reaction	206
7.3.2.2	Substrates	207
7.3.3	Peroxygenases: One Catalyst – Many Reactions	207
7.4	Protocols for Selected Reactions Employing Oxidoreductases	209
7.4.1	Alcohol Dehydrogenase (ADH): Disproportionation of <i>rac</i> -2- Phenylpropanal	209
7.4.1.1	Biotransformation	209
7.4.1.2	Product Recovery and Purification	210
7.4.2	Ene-reductase/Old Yellow Enzyme (OYE): Dynamic Kinetic Resolution of a γ -substituted Lactone	210
7.4.2.1	Biotransformation	210
7.4.2.2	Product Recovery and Purification	210
7.4.3	Baeyer–Villiger Monooxygenase (BVMO): Kinetic Resolution of a Racemic Ketone	210
7.4.3.1	Biotransformation	211
7.4.3.2	Product Recovery and Purification	211
7.4.4	Baeyer–Villiger Monooxygenase (BVMO): Asymmetric Sulfoxidation	211
7.4.4.1	Biotransformation	211
7.4.4.2	Product Recovery and Purification	211
7.5	Conclusions	211
	Acknowledgments	212
	References	212

8 Glycosyltransferase Cascades Made Fit For the Biocatalytic Production of Natural Product Glycosides 225

Bernd Nidetzky

8.1	Introduction: Glycosylated Natural Products and Leloir Glycosyltransferases	225
8.2	Glycosylated Flavonoids and Nothofagin	227
8.3	Glycosyltransferase Cascades for Biocatalytic Synthesis of Nothofagin	229
8.4	Enzyme Expression	230
8.5	Solvent Engineering for Substrate Solubilization	232
8.6	Nothofagin Production at 100 g Scale	233
8.7	Concluding Remarks	237
	References	237

Part III Ways to Improve Enzymatic Transformations 245

9	Application of Nonaqueous Media in Biocatalysis	247
	<i>Afifa A. Koesoema and Tomoko Matsuda</i>	
9.1	Introduction	247
9.2	Advantages and Disadvantages of Reactions in Nonaqueous Media	248

9.3	Nonaqueous Media Used for Biocatalysis	248
9.4	Enzymatic Activity and Inactivation in Nonaqueous Media	251
9.4.1	Enzymatic Activity in Nonaqueous Media	251
9.4.2	Factors Causing Inactivation of Enzymes in Nonaqueous Media	252
9.5	Practical Approaches to Stabilize Enzymes in Nonaqueous Media	252
9.5.1	Utilization of Nonaqueous Media-Tolerant Enzymes or Host Cells	252
9.5.2	Enzyme Immobilization	253
9.5.3	Modification of the Enzyme Preparation	254
9.5.4	Protein Engineering	255
9.6	Examples of Biocatalyzed Reactions in Solvent-Free Systems	256
9.7	Examples of Reactions in Micro-aqueous Systems	258
9.8	Examples of Reactions in Bio-Based Liquids	260
9.8.1	2-Methyltetrahydrofuran (MeTHF)	260
9.8.2	Cyclopentyl Methyl Ether (CPME)	261
9.8.3	Potential Application of other Bio-based Liquids	262
9.9	Examples of Reactions in Liquid CO ₂	262
9.10	Examples of Reactions in CO ₂ -Expanded Bio-based Liquids	264
9.11	Examples of Reactions in Natural Deep Eutectic Solvents	265
9.12	Conclusions and Future Perspectives	267
	References	267
10	Nonconventional Cofactor Regeneration Systems	275
	<i>Jiafu Shi, Yizhou Wu, Zhongyi Jiang, Yiyi Sun, Qian Huo, Weiran Li, Yang Zhao, and Yuqing Cheng</i>	
10.1	Introduction	275
10.2	Basics of Photocatalytic NADH Regeneration	279
10.2.1	Processes and Mechanism Associated with Photocatalytic NADH Regeneration	279
10.2.2	Aspects of Measuring Photocatalytic NADH Regeneration	281
10.3	Advancements in Photocatalytic NADH Regeneration	282
10.3.1	Nature Photosensitizers	282
10.3.2	Organic Molecular Photosensitizers	282
10.3.3	Inorganic Semiconductors	285
10.3.4	Organic Semiconductors	288
10.4	Expectations	290
10.5	Conclusions and Prospects	292
10.5.1	Conclusions	292
10.5.2	Prospects	292
	List of Abbreviations	292
	References	293

11	Biocatalysis Under Continuous Flow Conditions	297
	<i>Bruna Goes Palma, Marcelo A. do Nascimento, Raquel A. C. Leão, Omar G. Pandoli, and Rodrigo O. M. A. de Souza</i>	
11.1	Introduction	297
11.2	Practical Approach for Biocatalysis Under Continuous Flow Conditions	299
11.2.1	Esterification	299
11.2.1.1	Experimental Procedure	301
11.2.2	Transesterification	302
11.2.2.1	Experimental Procedure	303
11.2.3	Kinetic Resolutions	303
11.2.3.1	Kinetic Resolution of Amines Employing Lipases	304
11.2.3.1.1	Experimental Procedure	304
11.2.3.2	Kinetic Resolutions Employing ω -Transaminases	305
11.2.3.2.1	Experimental Procedure	305
11.2.3.3	Kinetic Resolution of Alcohols Using Lipases	307
11.2.3.3.1	Experimental Procedure	307
11.2.4	Dynamic Kinetic Resolutions	308
11.2.4.1	Experimental Procedure	309
11.2.5	Asymmetric Synthesis	309
11.2.5.1	Experimental Procedure	311
11.2.5.1.1	Protein Immobilization	311
11.2.5.1.2	Ion Exchange of NADPH on Ag-DEAE	311
11.2.5.1.3	General Procedure for the Continuous Asymmetric Reduction	311
11.3	Conclusions and Perspective	311
	References	312

Part IV Recent Trends in Enzyme-Catalyzed Reactions 317

12	Photobiocatalysis	319
	<i>Martín G. López-Vidal, Guillermo Gamboa, Gabriela Oksdath-Mansilla, and Fabricio R. Bisogno</i>	
12.1	Introduction	319
12.2	Oxidative Processes	321
12.2.1	Baeyer–Villiger Oxidation	321
12.2.2	Alkane Hydroxylation	322
12.2.3	O-Dealkylation	326
12.2.4	Decarboxylation	327
12.2.4.1	Alkene Production	327
12.2.4.2	Alkane Production	328
12.2.5	Epoxidation	330
12.3	Reductive Processes	332
12.3.1	Carbonyl Reduction	332
12.3.2	Olefin Reduction	336

12.3.3	Imine Reduction	342
12.3.4	Reductive Amination	344
12.3.5	Dehalogenation	345
12.3.6	Deacetoxylation	347
12.4	Combination of Photooxidation and Enzymatic Transformation	348
12.5	Summary and Outlook	352
	Abbreviations	352
	References	354
13	Practical Multienzymatic Transformations: Combining Enzymes for the One-pot Synthesis of Organic Molecules in a Straightforward Manner	<i>361</i>
	<i>Jesús Albarrán-Velo, Sergio González-Granda, Marina López-Agudo, and Vicente Gotor-Fernández</i>	
13.1	Introduction	361
13.2	Non-stereoselective Bienzymatic Transformations	363
13.2.1	Amine Synthesis	363
13.2.2	Bienzymatic Linear Cascades Toward the Production of Other Organic Compounds	365
13.3	Stereoselective Bienzymatic Transformations	367
13.3.1	Stereoselective Amine Synthesis Through Concurrent Processes	368
13.3.1.1	Amination of Alcohols	368
13.3.1.2	Deracemization of Amines	371
13.3.1.3	Amino Alcohol Synthesis	372
13.3.1.4	Other Bienzymatic Stereoselective Synthesis of Amines	374
13.3.2	Stereoselective Bienzymatic Cascades Toward the Production of Other Organic Compounds	377
13.3.2.1	Synthesis of Organic Compounds Other Than Amino Acids	377
13.3.2.2	Amino Acid Synthesis	383
13.4	Multienzymatic Transformations: Increasing Synthetic Complexity	386
13.5	Summary and Outlook	395
	References	395
14	Chemoenzymatic Sequential One-Pot Protocols	<i>403</i>
	<i>Harald Gröger</i>	
14.1	Introduction: Theoretical Information and Conceptual Overview	403
14.2	State of the Art in Sequential Chemoenzymatic One-Pot Synthesis: Selected Examples and Historical Overview About Selected Contributions	406
14.2.1	Sequential Chemoenzymatic One-Pot Synthesis Combining a Metal-Catalyzed Reaction with a Biotransformation	406
14.2.2	Sequential Chemoenzymatic One-Pot Synthesis Combining an Organocatalytic Reaction with a Biotransformation	411
14.2.3	Sequential Chemoenzymatic One-Pot Synthesis Combining a Reaction Catalyzed by a Heterogeneous Chemocatalyst with a Biotransformation	416

14.2.4	Sequential Chemoenzymatic One-Pot Synthesis Combining a Reaction Catalyzed by a Heterogeneous Biocatalyst with a Chemocatalytic Transformation	417
14.2.5	Sequential Chemoenzymatic One-Pot Synthesis Combining More than Two Reactions	418
14.3	Practical Aspects of the Development of Sequential Chemoenzymatic One-Pot Syntheses	420
14.4	Conclusions and Outlook	423
	References	424

Part V Industrial Biocatalysis 427

15	Industrial Processes Using Biocatalysts	429
	<i>Florian Kleinbeck, Marek Mahut, and Thierry Schlama</i>	
15.1	Introduction	429
15.2	Biocatalysis in the Pharmaceutical Industry	430
15.2.1	Pregabalin	431
15.2.2	Vernakalant	432
15.2.3	Sitagliptin	433
15.2.4	Esomeprazole	435
15.2.5	Montelukast	436
15.2.6	Boceprevir	439
15.3	Aspects to Consider for Development of a Biocatalytic Process on Commercial Scale – A Case Study	442
15.3.1	Identification of a Suitable Enzyme	443
15.3.2	Process Development	443
15.3.3	Control Strategy and Regulatory Considerations	445
15.3.3.1	Impurities	446
15.3.3.2	Types of Biocatalysts	450
15.3.3.3	Type of Expression System	451
15.3.3.4	Route of Administration	451
15.3.3.5	Position of the Biocatalytic Step in the Synthesis and Downstream Transformations	451
15.3.3.6	Summary of the Case Study	452
15.3.4	Health, Process Safety and Environmental Aspects	453
15.3.4.1	Health	453
15.3.4.2	Process Safety	453
15.3.4.3	Environmental Aspects	454
15.3.5	Equipment Utilization and Throughput Time	455
15.3.6	Equipment Cleaning	455
15.3.7	Enzyme Release Testing	456
15.3.8	Transport and Storage	457

15.4	Conclusions, Expectations, and Prospects	458
	Acknowledgments	460
	List of Abbreviations	460
	References	461

16 Enzymatic Commercial Sources 467

Gonzalo de Gonzalo and Iván Lavandera

16.1	Introduction	467
16.2	European Companies	468
16.2.1	AB Enzymes	468
16.2.2	Almac	468
16.2.3	Biocatalysts	469
16.2.4	c-Lecta GmbH	469
16.2.5	Enzymicals	470
16.2.6	Evoxx Technologies GmbH	470
16.2.7	GECCO	471
16.2.8	Inofea AG	472
16.2.9	Johnson-Matthey	472
16.2.10	Metgen Oy	473
16.2.11	Novozymes	474
16.2.12	Prozomix	474
16.2.13	Royal DSM	475
16.3	American Companies	475
16.3.1	Codexis Inc.	475
16.3.2	Dupont Nutrition and Biosciences	476
16.3.3	IBEX Technologies	476
16.3.4	MP Biomedical	477
16.3.5	Sigma-Aldrich	477
16.3.6	Strem Chemicals, Inc.	478
16.3.7	Worthington Biochemical Corp	479
16.4	Asian Enzyme Suppliers	480
16.4.1	Advanced Enzymes Technologies, Ltd.	480
16.4.2	Amano Enzyme Co., Ltd.	480
16.4.3	Aumgene Biosciences	481
16.4.4	EnzymeWorks	481
16.4.5	Meito Sangyo Co., Ltd.	481
16.4.6	Oriental Yeast Co., Ltd.	482
16.4.7	Takabio	482
16.4.8	Toyobo Co., Ltd.	482
16.5	Outlook	483
	References	484

Index 487