

Contents

Preface ix

1	Introduction 1
1.1	Electrochemical Energy Storage and Conversion 1
1.1.1	Secondary Batteries and Supercapacitors 2
1.1.2	Fuel Cells and Electrolyzers 4
1.2	Materials for Electrochemical Energy Storage and Conversion 5
1.2.1	Materials for Lithium-Ion Batteries 5
1.2.2	Materials for Supercapacitors 6
1.2.3	Materials for Oxygen Electrochemistry 7
1.2.4	Biomass-Derived Materials for Electrochemical Energy Storage and Conversion 7
1.3	Collagen-Derived Materials for Electrochemical Energy Storage and Conversion 9
	References 12
2	Collagen 15
2.1	History of Collagen 15
2.2	Structure and Composition of Collagen 16
2.2.1	Amino-Acid Residue and Triple-Helix Structure 17
2.2.2	Primary Structure of Chains 20
2.2.3	Molecular Organization and Structure 25
2.2.4	Aggregate Structure 28
2.3	Classification, Function, and Distribution of Collagen 31
	References 33
3	Synthesis and Applications of Collagen 39
3.1	Biosynthesis of Collagen 39
3.1.1	Formation of Pro- α -Chains 39
3.1.2	Hydroxylation and Glycosylation 40
3.1.3	Assembly to Triple-Helix Structure 41
3.1.4	Cleavage of Procollagen Molecules 41
3.1.5	Formation of Collagen Fibrils 41

3.1.6	Cross-Linking to Collagen Fibers	43
3.2	Extraction of Collagen	43
3.2.1	Acid Method	43
3.2.2	Salt Method	44
3.2.3	Enzymatic Method	44
3.2.4	Posttreatment	45
3.3	Applications of Collagen	46
3.3.1	Clinical Applications of Collagen	46
3.3.2	Food Applications of Collagen	48
3.3.3	Cosmetics Applications of Collagen	49
	References	51

4 Gelatin 55

4.1	History of Gelatin	55
4.2	Structures and Compositions	59
4.2.1	Molecular Structures	59
4.2.2	Amino Acids	62
4.3	Properties and Characterization	66
4.3.1	Viscosity and Adhesion	66
4.3.2	Amphoteric Behavior and Isoelectric Point	66
4.3.3	Surface Activity	67
4.3.4	Gel Formation and Strength	70
4.3.5	Rheology of Gelatin Solution	73
4.3.5.1	Amino-Acid Analysis	77
4.3.5.2	Determination of Total Protein Content	77
4.3.5.3	Electrophoretic Analysis	77
4.3.5.4	Viscoelastic Properties	77
4.3.5.5	Gel Strength	78
	References	78

5 Synthesis of Gelatin 81

5.1	Raw Materials	81
5.2	Extraction	85
5.2.1	Alkali-Treated Method	87
5.2.2	Acid-Treatment Method	87
5.2.3	Salt-Fraction Method	90
5.2.4	Enzymatic Method	91
5.2.5	Heat-Pressure Method	93
5.2.6	Microwave- and Ultrasonication-Assisted Extraction Methods	93
5.2.7	Posttreatment	94
5.2.7.1	Filtration and Clarification	94
5.2.7.2	Deionization	95
5.2.7.3	Concentration	95
5.2.7.4	Final Sterilization	96
5.2.7.5	Drying Process for Granulated Gelatin	96

5.2.7.6	Normalization and Packaging of Granulated Gelatin	97
5.3	Modification	98
5.3.1	Physical Modification	98
5.3.1.1	Orientational Methods of Modification	98
5.3.1.2	Conformational Methods of Modification	98
5.3.2	Chemical Modification	100
5.3.2.1	Phosphorylation Modification	101
5.3.2.2	Aldehyde Modification	103
5.3.2.3	Polyphenols Modification	104
5.3.2.4	Succinylation Modification	104
5.3.3	Enzymatic Modification of Gelatin	105
5.3.4	Complex Modification of Gelatin	106
	References	107

6 Applications of Gelatin in Electrochemical Energy Storage and Conversion 111

6.1	As Binders for Battery Electrodes	111
6.1.1	As Binders of Electrodes for Lithium–Sulfur Batteries	111
6.1.2	As Binders of Electrodes for Lithium-Ion Batteries	113
6.2	As Modifying Agents for Battery Electrodes	116
6.2.1	As Modifying Agents of Electrodes for Lithium–Sulfur Batteries	116
6.2.2	As Modifying Agents of Electrodes for Lithium Batteries	119
6.3	As Modifying Agents for Battery Separators	121
6.3.1	As Modifying Agents of Separators for Lithium–Sulfur Batteries	121
6.3.2	As Modifying Agents of Separators for Other Batteries	123
6.4	As Electrodeposition Additives for Electrode Preparation	125
6.5	As Hydrogel Electrolytes for Batteries	128
6.6	Other Applications in Electrochemical Energy and Conversion	136
	References	139

7 Collagen-Derived Carbons 143

7.1	History of Collagen-Derived Carbons	143
7.2	Carbonization Mechanism of Collagen-Derived Carbons	143
7.3	Structures and Compositions of Collagen-Derived Carbons	147
7.3.1	Morphologies	147
7.3.1.1	Zero-Dimensional Carbon Materials	147
7.3.1.2	One-Dimensional Carbon Materials	151
7.3.1.3	Two-Dimensional Carbon Material	153
7.3.1.4	Three-Dimensional Carbon Materials	157
7.3.2	Porosities	160
7.3.3	Heteroatoms and Defects	171
7.3.3.1	Types and Functions of Defects	171
7.3.3.2	Types and Functions of Heteroatoms	172
7.3.3.3	Collagen-Derived Carbons with Heteroatoms and Defects	174
	References	186

8	Synthesis of Collagen-Derived Carbons	193
8.1	Conventional Preparation Methods	193
8.1.1	Templating Method	193
8.1.1.1	Hard-Templating Method	193
8.1.1.2	Soft-Templating Method	194
8.1.2	Activation Method	194
8.1.2.1	Physical Activation	194
8.1.2.2	Chemical Activation	196
8.1.3	Post-doping Method	199
8.2	Nature-Inspired Methods	205
8.2.1	Hydroxyapatite-Induced Self-Activation Method	207
8.2.2	Hydroxyapatite-KOH Synergistic Method	214
8.2.3	Metal Hydroxide-Assistant Method	225
8.2.4	Metal Chloride-Assistant Method	231
	References	235
9	Applications of Collagen-Derived Carbons in Electrochemical Energy Storage and Conversion	243
9.1	As Electrode Materials for Supercapacitors	244
9.2	As Electrode Materials for Hybrid Capacitors	249
9.3	As Anode Materials for Alkali-Ion Batteries	256
9.4	As Anode Modifiers for Alkali-Ion Batteries	259
9.5	As Modifying Agents for Li-S Batteries	262
9.6	As Metal-Free Electrocatalysts	268
9.7	As Support Materials for Hybrid Electrocatalysts	271
9.8	As Support Materials for Metal–Nitrogen–Carbon Electrocatalysts	273
	References	280
10	Challenges and Opportunities	287
10.1	Principles for Material Design	287
10.1.1	In situ Characterization and Analysis	287
10.1.2	Theoretical Calculation and Simulation	290
10.2	Strategies for Material Synthesis	294
10.3	Diversities for Material Applications	297
10.3.1	Capacitive Desalination	297
10.3.2	Solar Steam Generation	297
10.3.3	Gas Adsorption	298
10.3.4	Microwave Adsorption	298
10.3.5	Photocatalysis	298
10.4	Inspirations for Other Materials and Their Applications	299
	References	299
	Index	303