1,

WPROWADZENIE

1.1. Era narzedzi

1.2. Dla kogo jest ta ksigzka?
1.3. Co znajdziesz w ksigzce?

PODSTAWY CZYSTEJ ARCHITEKTURY

2.1. Po co to wszystko?

2.2. System plytki kontra system gleboki
2.2.1. CRUD, czyli system plytki
2.2.2. System gleboki

2.3. Zalozenia czystej architektury
2.3.1. Niezaleznos¢ od frameworkow
2.3.2. Wysoka testowalnosé
2.3.3. Niezaleznos¢ od APl i interfejsu uzytkownika
2.3.4. Niezalezno$¢ od bazy danych
2.3.5. Niezalezno$¢ od firm trzecich
2.3.6. Elastycznos¢
2.3.7. Rozszerzalnos¢

2.4. Warstwy, czyli horyzontalna organizacja kodu
2.4.1. Swiat zewnetrzny
2.4.2. Infrastruktura
24.3. Aplikacja
2.44. Domena
2.4.5. Zasada zaleznosci
2.4.6. Granice

2.5. Podsumowanie

SPIS TRESCI

1"
1t
13
13

15
15
16
16
17
20
20
20
20
21
21
21
21
22
22
23
23
24
26
26
29



SPIS TRESCI

3. WZORCOWA IMPLEMENTACA
3.1. Oznajmienie
3.2. Przeplyw sterowania w czystej architekturze
3.3. Wymagania biznesowe
3.4. Implementacja
3.4.1. Diagram sekwencji
3.4.2. Granica wejsciowa (input boundary)
3.4.3. Granica wyjéciowa (output boundary)
3.4.4. Prezenter (presenter)
3.4.5. " Model widoku (view model)
3.4.6. Przypadek uzycia (use case)
3.4.7. Interfejs dostepu do danych (data access interface)
3.4.8. Dostep do danych (data access)
3.4.9. Encja oferty (bid)
3.4.10. Encja aukcji (auction)
3.5. Podsumowanie

4. MODYFIKACE CZYSTE) ARCHITEKTURY
4.1. Dylemat prezentéra
4.2. Pozbywamy sie granicy wejsciowej
4.3. Alternatywne podejécia do projektowania przypadkow uzycia
43.1. Fasada
4.3.2. Mediator pomiedzy wejsciowym DTO a przypadkiem uzycia
4.4. Uzycie modeli bazodanowych jako encji
4.5. Podsumowanie

5. WSTRZYKIWANIE ZALEZNOSCI
5.1. Czym sa zaleznosci?
5.2. Wszedobylskie abstrakcje i klasy
5.3. Abstrakcje w czystej architekturze
5.4. Odwro6cenie sterowania a zaleznosci
5.5. Kontener IoC kontra service locator
5.6. Wstrzykiwanie zaleznosci kontra konfiguracja
5.7. Podsumowanie

6. CQRS
6.1. Wstep
6.2. Co to ma wspoélnego z czysta architektura?
6.3. Osobny stos odczytu — dlaczego?
6.4. Osobny stos odczytu — jak?
6.4.1. Zapytanie jako DTO
6.4.2. Zapytania jako osobne klasy
6.4.3. Fasada modelu do odczytu

30
30
30
31
35
33
33
34
34
36
36
38
38
38
39
40

41
41
44
45
45
46
48
55

57
57
58
61
64
66
68
68

70
70
72
73
74
75
76
77

5



IMPLEMENTOWANIE CZYSTEJ ARCHITEKTURY W PYTHONIE

6.5. CQRS kontra REST API 78
6.6. CQRS kontra GraphQL 79
6.7. Podsumowanie 81
7. OSTRE GRANICE 82
7.1. Slowo o zlozonosci 82
7.2. Dwa Swiaty 84
7.3. Granica pomiedzy warstwa aplikacji a Swiatem zewnetrznym 85
7.4. Pisanie wejSciowego DTO 85
7.5. Value objects 86
7.6. Podsumowanie 89
8. STUDIUM PRZYPADKU — PLATFORMA AUKCYJNA 90
8.1. Jak pracujemy? 90
8.2. Jak zacza(, czyli chodzacy szkielet 22
8.3. Nasz chodzacy szkielet 93
8.4. Przypadek uzycia dla skladania oferty na aukcji 94
8.4.1. Nazewnictwo 94
8.4.2. Argumenty 94
84.3. Wryjscie 95
8.44. Testy 96
8.5. Encje aukcji i oferty 97
8.5.1. Nazewnictwo 97
8.5.2. Value objects jako identyfikatory 98
8.5.3. Implementacja : 98
8.5.4. Testy jednostkowe 99
8.5.5. Implementacja — ciag dalszy 100 -
8.6. Abstrakcyjne repozytorium 101
8.6.1. Nazewnictwo 102
8.6.2. Implementacja 102
8.7. Repozytorium 102
8.7.1. Nazewnictwo 102
8.7.2. Implementacja dzialajaca w pamieci 103
8.7.3. Rozwijanie ifnplementacji pod ostong TDD 103
8.8. Konczymy przypadek uzycia — sktadanie oferty 105
8.8.1. Wstrzykiwanie zaleznosci 105
8.8.2. Sprawiamy, ze pierwszy sensowny test przechodzi 105
8.8.3. Refaktoryzacja 106
8.9. Organizacja kodu 107
8.9.1. Jak mozna ulozy¢ kod w Pythonie? 107
8.9.2. Organizujemy kod projektu 108
8.9.3. Organizujemy kod warstwy infrastruktury 110
8.9.4. Laczymy wszystko razem w komponencie main 112
8.9.5. Wystawiamy API 116

%:6



8.10. Finalizujemy aukcje w kolejnym przypadku uzycia

8.11.

8.12.

8.13.

8.10.1.
8.10.2.
8.10.3.

8.10.4.
8.10.5.
8.10.6.
8.10.7.

8.10.8.
8.10.9.

Zarys przypadku uzycia i wejsciowe DTO
Rozszerzamy encje, by spelni¢ nowe wymagania
Skoro encje nie powinny mie¢ zadnych zaleznosci,
to czy moga pytac o czas?

Wprowadzamy port dla ptatnosci
Implementujemy adapter

Obstuga bled6w kontra zasada zaleznosci

A co, gdybysémy chcieli

doda¢ zapamietywanie karty platniczej?

Jak zy¢, gdy adapter rosnie?

Bramka platnoéci ma juz SDK.

Nie mozemy go po prostu uzy¢?

Przypadek uzycia — rozpoczynanie nowej aukcji

111
8.11.2.
8.11.3.
8.11.4.
81150

Skad sie biorag nowe aukcje?

Engja aukgji i jej opis w jednym obiekcie — za i przeciw
Wprowadzamy deskryptor

Repozytorium z interfejsem kolekcji

Ktére repozytorium wybrac?

Operacje odczytu danych

8.12.1.
8.12.2.
8.12.3.
8.12.4.
8.12.5.

Podejscie z przypadkami uzycia

CQRS na ratunek

Zapytania jako klasa

Model do odczytu

Podsumowanie operacji odczytujacych dane

Odwracamy kontrole za pomocg zdarzen

B3l
8.13.2.
8.13.3.
8.13.4.
8.13.5.
8.13.6.

8.13.7.
8.13.8
8.13.9.
8.13.10.
813 11
8.13.12.
8.13.13.
8.13.14.

Przyklad — wysylka e-maili

Techniki odwracania kontroli

Implementacja zdarzen

Skad wziaé szyne zdarzen?

Jak wydostaé zdarzenia z encji?

Encja gromadzi zdarzenia,

ktore potem publikuje repozytorium

Encja zwraca zdarzenia z metod, ktére zmieniajq jej stan
Testowanie engji, ktére zwracajg zdarzenia
Subskrybowanie si¢ na zdarzenia

Zdarzenia kontra transakcje kontra efekty uboczne
Niezawodne publikowanie zdarzef — outbox pattern
Wprowadzamy jednostke pracy

Czas zycia jednostki pracy

Relacja pomiedzy jednostka pracy a szyna zdarzen

SPIS TRESCI

118
119
120

122
123
125
126

127
129

131
131
131
132
134
134
137
138
138
140
140
142
144
144
144
145
146
147
148

148
149
151
152
153
155
156
158
158



IMPLEMENTOWANIE CZYSTEJ ARCHITEKTURY W PYTHONIE

8.14. Radzimy sobie z innymi przekrojowymi zagadnieniami 160
8.14.1. Konfiguracja 161
8.14.2. Walidacja 162
8.14.3. Synchronizacja 163

8.15. Podsumowanie 166

9. MODULARNOSC 167

9.1. Cigzar sukcesu — rozrost i ciggle zmiany 167

9.2. Komponenty i kohezja 167

9.3. Organizacja kodu wedlug komponentu 168

9.4. Komponenty i swoboda architektoniczna 170

9.5. Komponenty kontra mikroserwisy 170

9.6. Komponenty a uzytkownik 172

9.7. Komponenty a bounded context 173

9.8. Komponenty — implementacja 173

9.9. Zaleznoéci miedzy komponentami 175
9.9.1. Oddzielne drogi 175
9.9.2. Bezposrednia zaleznos¢ — oba komponenty implementuja

czysta architekture 176
9.9.3. Niebezposrednia zalezno$¢ — oba komponenty implementuja

czysta architekture 177
9.9.4. Zaleznos¢, gdy jeden z komponentéw nie implementuje

czystej architektury 178
9.9.5. Odmiany integracji za pomocg zdarzen 178
9.9.6. Zaleznosci miedzy komponentami — podsumowanie 179

9.10. Studium przypadku — platforma aukcyjna 179
9.10.1. Odkrywamy komponenty 179
9.10.2. Komponenty platformy aukcyjnej 180
9.10.3. Co komponent wystawia na zewnatrz? 181

9.104. Tam, gdzie wszystko skiada si¢ w caloé¢ — komponent main 185
9.10.5. Korzystamy z komponentu main do uruchomienia aplikacji 186
9.10.6. Jedna architektura dla wszystkich komponentow

— czy to mozliwe? 187
9.10.7. Zaleznosci pomiedzy komponentami 189
9.10.8. Integrowanie komponentéw za pomoca zdarzen 191
9.10.9. Wewnetrzna obstuga zdarzefi w tym samym komponencie 197
9.10.10. Integracja r6znych komponentéw za pomoca zdarzen —
prosty przypadek 198
9.10.11. Integracja r6znych komponentéw za pomoca zdarzefi —
zlozony przypadek 201
9.10.12. Inne ciekawe zastosowania menadzera procesu 206
9.10.13. Menadzer procesu kontra wyscigi 207
9.11. Podsumowanie 210



10.

1.

12.

13.

SPIS TRESCI

TESTOWANIE

10.1. Strategia testowania i odmiany funkcji
10.1.1. Piramida testow — mit czy jedyna stuszna droga?
10.1.2. Rodzaje testow
10.1.3. Jak przetestowac przegladarke do bazy danych?
10.14. Jak przetestowac proxy?
10.1.5. Jak przetestowac system gleboki?

10.2. Odkrywamy testowanie jednostkowe na nowo
10.2.1. Ile musi wiedzie¢ test?

10.3. Testowanie stanu kontra testowanie interakcji
10.3.1. Rodzaje weryfikacji
10.3.2. Niebezpieczenstwa zwigzane z inspekcja stanu
10.3.3. Niebezpieczefistwa zwiazane ze sprawdzaniem interakcji
10.3.4. Stuby kontra mocki :
10.3.5. Rodzaje obiektéw dubleréw

10.4. Testujemy caly komponent jednostkowo
10.4.1. Ustawiamy komponent w pozadanym stanie
10.4.2. Wywolujemy akcje na komponencie
10.4.3. Weryfikujemy rezultat akcji na poziomie komponentu
10.4.4. Radzimy sobie z zaleznoSciami

w postaci portéw i repozytoriow
10.5. Podsumowanie

ZAKONCZENIE
11.1. Co dalej?

SUPLEMENT A: MIGRACJA Z PROJEKTU ODZIEDZICZONEGO
12.1. Czy powinno sie to robic?

12.2. Jak to zrobic?

12.3. ,Nie moge przesta¢ dostarcza¢ nowych funkgji!”

SUPLEMENT B: WPROWADZENIE DO EVENT SOURCING
13.1. Co to jest event sourcing?
13.2. Agregat z event sourcing kontra agregat z domain-driven design
13.3. Prosty przykliad agregatu
13.3.1. Zamowienie jako encja
13.3.2. Istotne zmiany zaméwienia w formie zdarzen
13.3.3. Uwaga na te zdarzenia!
13.3.4. Zamowienie jako agregat
13.3.5. Testowanie agregatow
13.4. Persystencja
13.4.1. Nowe zdarzenia s dolagczane na koniec strumienia zdarzen
13.4.2. Pobieranie strumienia zdarzen

212
212
213
215
218
220
223
224
224
228
228
229
231
232
233
234
235
237
237

240
241

243
243

245
245
245
247

248
248
250
251
251
252
253
254
257
257
257
259



IMPLEMENTOWANIE CZYSTEJ ARCHITEKTURY W PYTHONIE

13.4.3.
13.4.4.
13.4.5.
13.4.6.
13.4.7.
13.4.8.
13.4.9.

Dopisywanie nowych zdarzeh do strumienia
Wyb6r bazy danych — podsumowanie wymagan
Przykladowa implementacja z uzyciem PostgreSQL
Uzycie event store

Co robi¢, gdy wykryjemy wyscig?

Uzycie repozytorium do ukrycia event store
Migawki stanu agregatu

13.5. Projekcje
13.6. Event sourcing w aplikacji skladajacej sie z komponentow

1361
13.6.2.

Event sourcing to szczegol implementacyjny komponentu
Stosuj zdarzenia domenowe na potrzeby integracji

13.7. Podsumowanie

BIBLIOGRAFIA

=10

260
261
261
266
266
268
268
272
276
276
277
277

279



