

Table of Contents

Preface

1

Section 1: Core Concepts

Chapter 1: The Nuts and Bolts of Neural Networks	9
The mathematical apparatus of NNs	10
Linear algebra	10
Vector and matrix operations	12
Introduction to probability	16
Probability and sets	18
Conditional probability and the Bayes rule	20
Random variables and probability distributions	22
Probability distributions	25
Information theory	28
Differential calculus	31
A short introduction to NNs	34
Neurons	35
Layers as operations	36
NNs	38
Activation functions	40
The universal approximation theorem	45
Training NNs	47
Gradient descent	48
Cost functions	50
Backpropagation	52
Weight initialization	56
SGD improvements	58
Summary	60

Section 2: Computer Vision

Chapter 2: Understanding Convolutional Networks	63
Understanding CNNs	64
Types of convolutions	70
Transposed convolutions	70
1×1 convolutions	73
Depth-wise separable convolutions	74
Dilated convolutions	75
Improving the efficiency of CNNs	76
Convolution as matrix multiplication	77
Winograd convolutions	79
Visualizing CNNs	82

Guided backpropagation	82
Gradient-weighted class activation mapping	85
CNN regularization	87
Introducing transfer learning	90
Implementing transfer learning with PyTorch	91
Transfer learning with TensorFlow 2.0	97
Summary	102
Chapter 3: Advanced Convolutional Networks	103
Introducing AlexNet	104
An introduction to Visual Geometry Group	105
VGG with PyTorch and TensorFlow	107
Understanding residual networks	108
Implementing residual blocks	111
Understanding Inception networks	118
Inception v1	119
Inception v2 and v3	120
Inception v4 and Inception-ResNet	122
Introducing Xception	123
Introducing MobileNet	126
An introduction to DenseNets	128
The workings of neural architecture search	131
Introducing capsule networks	136
The limitations of convolutional networks	136
Capsules	138
Dynamic routing	140
The structure of the capsule network	142
Summary	143
Chapter 4: Object Detection and Image Segmentation	145
Introduction to object detection	146
Approaches to object detection	147
Object detection with YOLOv3	148
A code example of YOLOv3 with OpenCV	154
Object detection with Faster R-CNN	157
Region proposal network	159
Detection network	161
Implementing Faster R-CNN with PyTorch	163
Introducing image segmentation	166
Semantic segmentation with U-Net	167
Instance segmentation with Mask R-CNN	170
Implementing Mask R-CNN with PyTorch	172
Summary	174
Chapter 5: Generative Models	175
Intuition and justification of generative models	175

Introduction to VAEs	176
Generating new MNIST digits with VAE	181
Introduction to GANs	187
Training GANs	188
Training the discriminator	190
Training the generator	192
Putting it all together	193
Problems with training GANs	195
Types of GAN	196
Deep Convolutional GAN	196
Implementing DCGAN	197
Conditional GAN	202
Implementing CGAN	203
Wasserstein GAN	206
Implementing WGAN	209
Image-to-image translation with CycleGAN	212
Implementing CycleGAN	215
Building the generator and discriminator	216
Putting it all together	218
Introducing artistic style transfer	222
Summary	224

Section 3: Natural Language and Sequence Processing

Chapter 6: Language Modeling	227
Understanding n-grams	228
Introducing neural language models	230
Neural probabilistic language model	232
Word2Vec	233
CBOW	234
Skip-gram	236
fastText	238
Global Vectors for Word Representation model	239
Implementing language models	243
Training the embedding model	243
Visualizing embedding vectors	246
Summary	250
Chapter 7: Understanding Recurrent Networks	251
Introduction to RNNs	251
RNN implementation and training	256
Backpropagation through time	258
Vanishing and exploding gradients	262
Introducing long short-term memory	264
Implementing LSTM	269
Introducing gated recurrent units	274

Implementing GRUs	275
Implementing text classification	278
Summary	282
Chapter 8: Sequence-to-Sequence Models and Attention	283
Introducing seq2seq models	284
Seq2seq with attention	287
Bahdanau attention	287
Luong attention	290
General attention	292
Implementing seq2seq with attention	294
Implementing the encoder	294
Implementing the decoder	295
Implementing the decoder with attention	296
Training and evaluation	298
Understanding transformers	302
The transformer attention	302
The transformer model	306
Implementing transformers	310
Multihead attention	310
Encoder	313
Decoder	315
Putting it all together	316
Transformer language models	319
Bidirectional encoder representations from transformers	319
Input data representation	321
Pretraining	322
Fine-tuning	324
Transformer-XL	326
Segment-level recurrence with state reuse	328
Relative positional encodings	329
XLNet	331
Generating text with a transformer language model	335
Summary	337
Section 4: A Look to the Future	
Chapter 9: Emerging Neural Network Designs	341
Introducing Graph NNs	342
Recurrent GNNs	345
Convolutional Graph Networks	348
Spectral-based convolutions	349
Spatial-based convolutions with attention	352
Graph autoencoders	355
Neural graph learning	359
Implementing graph regularization	361
Introducing memory-augmented NNs	365

Neural Turing machines	366
MANN*	373
Summary	374
Chapter 10: Meta Learning	375
Introduction to meta learning	376
Zero-shot learning	377
One-shot learning	378
Meta-training and meta-testing	380
Metric-based meta learning	382
Matching networks for one-shot learning	382
Siamese networks	385
Implementing Siamese networks	386
Prototypical networks	389
Optimization-based learning	393
Summary	400
Chapter 11: Deep Learning for Autonomous Vehicles	401
Introduction to AVs	402
Brief history of AV research	402
Levels of automation	405
Components of an AV system	406
Environment perception	408
Sensing	409
Localization	411
Moving object detection and tracking	411
Path planning	412
Introduction to 3D data processing	413
Imitation driving policy	417
Behavioral cloning with PyTorch	418
Generating the training dataset	421
Implementing the agent neural network	423
Training	424
Letting the agent drive	426
Putting it all together	427
Driving policy with ChauffeurNet	429
Input and output representations	429
Model architecture	432
Training	434
Summary	439
Other Books You May Enjoy	441
Index	445
