Table of Contents

Rface. i o e s OIS e v se SRRSO SRR S5, iX

Introduction, ooy Sl i B BRI T 0 ST BASTAR Xvii

Partl. Buildingan Architecture to Support Domain Modeling

1. DomainModeling.........ccccoieiiiiiinnnnnenneniiieniininiiiiiiiisesiiiens 5
What Is a Domain Model? 6
Exploring the Domain Language 9
Unit Testing Domain Models 10

Dataclasses Are Great for Value Objects 15
Value Objects and Entities 17
Not Everything Has to Be an Object: A Domain Service Function 19
Python’s Magic Methods Let Us Use Our Models with Idiomatic Python 20
Exceptions Can Express Domain Concepts Too 20

2. Repository Pattem.ocoivieriiiinniiiiiinneieiiiitiiinisniiesinnees 23
Persisting Our Domain Model 24
Some Pseudocode: What Are We Going to Need? 24
Applying the DIP to Data Access o
Reminder: Our Model 26

The “Normal” ORM Way: Model Depends on ORM 27
Inverting the Dependency: ORM Depends on Model 28
Introducing the Repository Pattern 31
The Repository in the Abstract 32
What Is the Trade-Off? 33

Building a Fake Repository for Tests Is Now Trivial! 37

What Is a Port and What Is an Adapter, in Python?
Wrap-Up

. ABrief Interlude: On Coupling and Abstractions.................ccoovuunn..

Abstracting State Aids Testability

Choosing the Right Abstraction(s)

Implementing Our Chosen Abstractions
Testing Edge to Edge with Fakes and Dependency Injection
Why Not Just Patch It Out?

Wrap-Up

. Our First Use Case: Flask APl and Service Layer............oovvvverervnnnnnn.

Connecting Our Application to the Real World

A First End-to-End Test

The Straightforward Implementation

Error Conditions That Require Database Checks

Introducing a Service Layer, and Using FakeRepository to Unit Test It
A Typical Service Function

Why Is Everything Called a Service?

Putting Things in Folders to See Where It All Belongs

Wrap-Up
The DIP in Action

. TDDin High Gear and Low Gear...........ccvvvviiviiiirnnnneineeeeennnnns

How Is Our Test Pyramid Looking? ;

Should Domain Layer Tests Move to the Service Layer?

On Deciding What Kind of Tests to Write

High and Low Gear

Fully Decoupling the Service-Layer Tests from the Domain
Mitigation: Keep All Domain Dependencies in Fixture Functions
Adding a Missing Service

Carrying the Improvement Through to the E2E Tests

Wrap-Up

e UNit Of WOrK Pattern. ..o ovvierieiietie e iienneeneneenssnssnnsensnnnns

The Unit of Work Collaborates with the Repository
Test-Driving a UoW with Integration Tests
Unit of Work and Its Context Manager
The Real Unit of Work Uses SQLAlchemy Sessions
Fake Unit of Work for Testing
Using the UoW in the Service Layer
Explicit Tests for Commit/Rollback Behavior

37
38

4
43
46
47
49
51
53

55
57
57
58
60
61
63
66
67
68
68

n
72
72
73
74
75
76
76
78
79

81
83
84
85
86
87
88
89

iv

Table of Contents

Explicit Versus Implicit Commits 90
Examples: Using UoW to Group Multiple Operations into an Atomic Unit 91

Example 1: Reallocate 91
Example 2: Change Batch Quantity 91
Tidying Up the Integration Tests 92
Wrap-Up 93
7. Aggregates and Consistency Boundaries.............coceveiiiiiiiiiiiienne, 95
Why Not Just Run Everything in a Spreadsheet? 96
Invariants, Constraints, and Consistency 96
Invariants, Concurrency, and Locks 97
What Is an Aggregate? 98
Choosing an Aggregate 99
One Aggregate = One Repository 102
What About Performance? 104
Optimistic Concurrency with Version Numbers 105
Implementation Options for Version Numbers 107
Testing for Our Data Integrity Rules 109
Enforcing Concurrency Rules by Using Database Transaction
Isolation Levels 110
Pessimistic Concurrency Control Example: SELECT FOR UPDATE 111
Wrap-Up 111
Part I Recap 113

Partll. Event-Driven Architecture

8. Eventsand the MessageBus.........ccooveiiiiiiiiiiiiisnccisscesanncenaas 1n7
Avoiding Making a Mess 118
First, Let’s Avoid Making a Mess of Our Web Controllers 118
And Let’s Not Make a Mess of Our Model Either 119
Or the Service Layer! 120
Single Responsibility Principle 120
All Aboard the Message Bus! 121
The Model Records Events 121
Events Are Simple Dataclasses 121
The Model Raises Events 122
The Message Bus Maps Events to Handlers 123
Option 1: The Service Layer Takes Events from the Model and Puts Them on
the Message Bus 124
Option 2: The Service Layer Raises Its Own Events 125
Option 3: The UoW Publishes Events to the Message Bus 126

Tableof Contents | v

10.

1.

12.

Wrap-Up

Going to Town on the Message Bus.covvvvveeiiiineeiiinnieienns

A New Requirement Leads Us to a New Architecture

Imagining an Architecture Change: Everything Will Be an Event Handler

Refactoring Service Functions to Message Handlers
The Message Bus Now Collects Events from the UoW
Our Tests Are All Written in Terms of Events Too
A Temporary Ugly Hack: The Message Bus Has to Return Results
Modifying Our API to Work with Events
Implementing Our New Requirement
Our New Event
Test-Driving a New Handler
Implementation
A New Method on the Domain Model

Optionally: Unit Testing Event Handlers in Isolation with a Fake Message

Bus

Wrap-Up
What Have We Achieved?
Why Have We Achieved?

Commands and Command Handler..................cocovviiiiniininnn, ‘
Commands and Events

Differences in Exception Handling

Discussion: Events, Commands, and Error Handling

Recovering from Errors Synchronously

Wrap-Up

Event-Driven Architecture: Using Events to Integrate Microservices.

Distributed Ball of Mud, and Thinking in Nouns
Error Handling in Distributed Systems
The Alternative: Temporal Decoupling Using Asynchronous Messaging
Using a Redis Pub/Sub Channel for Integration
Test-Driving It All Using an End-to-End Test
Redis Is Another Thin Adapter Around Our Message Bus
Our New Outgoing Event
Internal Versus External Events
Wrap-Up

Command-Query Responsibility Segregation (CQRS)............... sl Gibis

Domain Models Are for Writing
Most Users Aren't Going to Buy Your Furniture

130

133
135
136
137
139
141
141
142
143
143
144
145
146

147
149
150
150

151
151
153
155
158
160

161
162
165
167
168
169
170
171
172
172

175
176
177

vi

Table of Contents

Post/Redirect/Get and CQS 179
Hold On to Your Lunch, Folks 181
Testing CQRS Views 182
“Obvious” Alternative 1: Using the Existing Repository 182
Your Domain Model Is Not Optimized for Read Operations 183
“Obvious” Alternative 2: Using the ORM 184
SELECT N+1 and Other Performance Considerations 184
Time to Completely Jump the Shark 185
Updating a Read Model Table Using an Event Handler 186
Changing Our Read Model Implementation Is Easy 188
Wrap-Up 189

13. Dependency Injection (and Bootstrapping).covvvviiiiiiiiiiiaiins 191
Implicit Versus Explicit Dependencies 193
Aren’t Explicit Dependencies Totally Weird and Java-y? 194
Preparing Handlers: Manual DI with Closures and Partials 196

An Alternative Using Classes 198

A Bootstrap Script 199
Message Bus Is Given Handlers at Runtime 201
Using Bootstrap in Our Entrypoints 203
Initializing DI in Our Tests 204
Building an Adapter “Properly”: A Worked Example 205
Define the Abstract and Concrete Implementations 206

Make a Fake Version for Your Tests 206
Figure Out How to Integration Test the Real Thing 207
Wrap-Up 209
ERHOGNE. . s v worvn avnvs evanis S, SO LI o L SR VI S P PH POTPPes 21
A SuromaryDiagramand Table: i,ovvivsvesiosssrsmerciinosnsonessasrsnes 229
B.-ATemplate Project SOUIMUIR, <, .. s onownsn onsmpnvunevoswnssonmss ¢ vos vasan s oy 231
C. Swapping Out the Infrastructure: Do Everything with CSVs.................ooeiis 239
D. Repository and Unit of Work Patterns with Django........ S 0 A 245
B VMW, v b5 ev s nns shunvrmen bebioyns St n sk smlhs hastessesri s Hhs beshninie 255
BB, o sss vninams dnsionndn s Brninn s ansnn erk omevos sxwsvesnbnmnbiense sus pnsbens 265
Table of Contents | vii

