

Table of Contents

Preface	1
Chapter 1: Preparing and Understanding Data	9
Overview	10
Reading the data	11
Handling duplicate observations	13
Descriptive statistics	14
Exploring categorical variables	15
Handling missing values	17
Zero and near-zero variance features	19
Treating the data	21
Correlation and linearity	23
Summary	27
Chapter 2: Linear Regression	29
Univariate linear regression	30
Building a univariate model	33
Reviewing model assumptions	36
Multivariate linear regression	38
Loading and preparing the data	39
Modeling and evaluation – stepwise regression	46
Modeling and evaluation – MARS	52
Reverse transformation of natural log predictions	56
Summary	59
Chapter 3: Logistic Regression	61
Classification methods and linear regression	62
Logistic regression	62
Model training and evaluation	63
Training a logistic regression algorithm	64
Weight of evidence and information value	66
Feature selection	68
Cross-validation and logistic regression	71
Multivariate adaptive regression splines	77
Model comparison	81
Summary	83
Chapter 4: Advanced Feature Selection in Linear Models	85
Regularization overview	86
Ridge regression	87
LASSO	87

Elastic net	88
Data creation	88
Modeling and evaluation	91
Ridge regression	91
LASSO	96
Elastic net	99
Summary	104
Chapter 5: K-Nearest Neighbors and Support Vector Machines	105
K-nearest neighbors	106
Support vector machines	107
Manipulating data	111
Dataset creation	111
Data preparation	114
Modeling and evaluation	117
KNN modeling	117
Support vector machine	125
Summary	131
Chapter 6: Tree-Based Classification	133
An overview of the techniques	134
Understanding a regression tree	134
Classification trees	135
Random forest	136
Gradient boosting	137
Datasets and modeling	138
Classification tree	138
Random forest	144
Extreme gradient boosting – classification	152
Feature selection with random forests	157
Summary	160
Chapter 7: Neural Networks and Deep Learning	161
Introduction to neural networks	162
Deep learning – a not-so-deep overview	167
Deep learning resources and advanced methods	169
Creating a simple neural network	171
Data understanding and preparation	171
Modeling and evaluation	173
An example of deep learning	176
Keras and TensorFlow background	176
Loading the data	177
Creating the model function	178
Model training	180
Summary	182

Chapter 8: Creating Ensembles and Multiclass Methods	183
Ensembles	184
Data understanding	185
Modeling and evaluation	187
Random forest model	187
Creating an ensemble	190
Summary	191
Chapter 9: Cluster Analysis	193
Hierarchical clustering	195
Distance calculations	196
K-means clustering	197
Gower and PAM	197
Gower	198
PAM	199
Random forest	200
Dataset background	201
Data understanding and preparation	201
Modeling	204
Hierarchical clustering	204
K-means clustering	212
Gower and PAM	215
Random forest and PAM	216
Summary	218
Chapter 10: Principal Component Analysis	219
An overview of the principal components	220
Rotation	223
Data	225
Data loading and review	226
Training and testing datasets	229
PCA modeling	231
Component extraction	231
Orthogonal rotation and interpretation	234
Creating scores from the components	235
Regression with MARS	236
Test data evaluation	240
Summary	242
Chapter 11: Association Analysis	243
An overview of association analysis	243
Creating transactional data	245
Data understanding	246
Data preparation	247
Modeling and evaluation	249

Summary	254
Chapter 12: Time Series and Causality	255
Univariate time series analysis	256
Understanding Granger causality	264
Time series data	265
Data exploration	267
Modeling and evaluation	272
Univariate time series forecasting	272
Examining the causality	282
Linear regression	283
Vector autoregression	284
Summary	290
Chapter 13: Text Mining	291
Text mining framework and methods	292
Topic models	294
Other quantitative analysis	295
Data overview	297
Data frame creation	297
Word frequency	299
Word frequency in all addresses	299
Lincoln's word frequency	301
Sentiment analysis	305
N-grams	309
Topic models	311
Classifying text	316
Data preparation	316
LASSO model	318
Additional quantitative analysis	320
Summary	327
Chapter 14: Exploring the Machine Learning Landscape	329
ML versus software engineering	329
Types of ML methods	334
Supervised learning	334
Unsupervised learning	336
Semi-supervised learning	338
Reinforcement learning	339
Transfer learning	341
ML terminology – a quick review	344
Deep learning	344
Big data	345
Natural language processing	345
Computer vision	345
Cost function	346

Model accuracy	346
Confusion matrix	346
Predictor variables	347
Response variable	347
Dimensionality reduction	347
Class imbalance problem	348
Model bias and variance	349
Underfitting and overfitting	349
Data preprocessing	350
Holdout sample	351
Hyperparameter tuning	351
Performance metrics	352
Feature engineering	352
Model interpretability	353
ML project pipeline	354
Business understanding	355
Understanding and sourcing the data	355
Preparing the data	356
Model building and evaluation	358
Model deployment	358
Learning paradigm	360
Datasets	361
Summary	361
Chapter 15: Predicting Employee Attrition Using Ensemble Models	363
Philosophy behind ensembling	364
Getting started	366
Understanding the attrition problem and the dataset	366
K-nearest neighbors model for benchmarking the performance	381
Bagging	384
Bagged classification and regression trees (treeBag) implementation	386
Support vector machine bagging (SVMBag) implementation	387
Naive Bayes (nbBag) bagging implementation	388
Randomization with random forests	389
Implementing an attrition prediction model with random forests	390
Boosting	391
The GBM implementation	392
Building attrition prediction model with XGBoost	394
Stacking	395
Building attrition prediction model with stacking	396
Summary	399
Chapter 16: Implementing a Jokes Recommendation Engine	401
Fundamental aspects of recommendation engines	402
Recommendation engine categories	404

Content-based filtering	404
Collaborative filtering	404
Hybrid filtering	405
Getting started	405
Understanding the Jokes recommendation problem and the dataset	405
Converting the DataFrame	409
Dividing the DataFrame	410
Building a recommendation system with an item-based collaborative filtering technique	411
Building a recommendation system with a user-based collaborative filtering technique	415
Building a recommendation system based on an association-rule mining technique	419
The Apriori algorithm	420
Content-based recommendation engine	427
Differentiating between ITCF and content-based recommendations	429
Building a hybrid recommendation system for Jokes recommendations	430
Summary	433
References	434
Chapter 17: Sentiment Analysis of Amazon Reviews with NLP	435
The sentiment analysis problem	437
Getting started	438
Understanding the Amazon reviews dataset	438
Building a text sentiment classifier with the BoW approach	443
Pros and cons of the BoW approach	449
Understanding word embedding	450
Building a text sentiment classifier with pretrained word2vec word embedding based on Reuters news corpus	453
Building a text sentiment classifier with GloVe word embedding	458
Building a text sentiment classifier with fastText	462
Summary	469
Chapter 18: Customer Segmentation Using Wholesale Data	471
Understanding customer segmentation	472
Understanding the wholesale customer dataset and the segmentation problem	474
Categories of clustering algorithms	478
Identifying the customer segments in wholesale customer data using k-means clustering	479
Working mechanics of the k-means algorithm	485
Identifying the customer segments in the wholesale customer data using DIANA	490

Identifying the customer segments in the wholesale customers data using AGNES	496
Summary	501
Chapter 19: Image Recognition Using Deep Neural Networks	503
Technical requirements	504
Understanding computer vision	504
Achieving computer vision with deep learning	505
Convolutional Neural Networks	506
Layers of CNNs	507
Introduction to the MXNet framework	510
Understanding the MNIST dataset	511
Implementing a deep learning network for handwritten digit recognition	515
Implementing dropout to avoid overfitting	522
Implementing the LeNet architecture with the MXNet library	527
Implementing computer vision with pretrained models	532
Summary	536
Chapter 20: Credit Card Fraud Detection Using Autoencoders	537
Machine learning in credit card fraud detection	538
Autoencoders explained	540
Types of AEs based on hidden layers	542
Types of AEs based on restrictions	543
Applications of AEs	545
The credit card fraud dataset	546
Building AEs with the H2O library in R	547
Autoencoder code implementation for credit card fraud detection	548
Summary	572
Chapter 21: Automatic Prose Generation with Recurrent Neural Networks	573
Understanding language models	574
Exploring recurrent neural networks	577
Comparison of feedforward neural networks and RNNs	581
Backpropagation through time	584
Problems and solutions to gradients in RNN	585
Exploding gradients	585
Vanishing gradients	586
Building an automated prose generator with an RNN	587
Implementing the project	593
Summary	603
Chapter 22: Winning the Casino Slot Machines with Reinforcement Learning	605

Understanding RL	606
Comparison of RL with other ML algorithms	608
Terminology of RL	609
The multi-arm bandit problem	610
Strategies for solving MABP	614
The epsilon-greedy algorithm	615
Boltzmann or softmax exploration	616
Decayed epsilon greedy	616
The upper confidence bound algorithm	616
Thompson sampling	618
Multi-arm bandit – real-world use cases	618
Solving the MABP with UCB and Thompson sampling algorithms	619
Summary	628
Creating a Package	629
Other Books You May Enjoy	635
Index	639