Preface

Contents

Acknowledgments
About the Author

Chapter 1 Pythonic Thinking

Item 1:
Item 2:
Item 3:
Item 4:
Item 5:
Item 6:

Item 7!
Item 8:
Item 9:

Item 10: Prevent Repetition with Assignment Expressions

Know Which Version of Python You're Using
Follow the PEP 8 Style Guide
Know the Differences Between bytes and str

Prefer Interpolated F-Strings Over C-style
Format Strings and str.format

Write Helper Functions Instead of
Complex Expressions

Prefer Multiple Assignment Unpacking
Over Indexing

Prefer enumerate Over range
Use zip to Process Iterators in Parallel
Avoid else Blocks After for and while Loops

Chapter 2 Lists and Dictionaries

Item 11: Know How to Slice Sequences

Item 12: Avoid Striding and Slicing in a Single Expression

Item 13: Prefer Catch-All Unpacking Over Slicing

Item 14: Sort by Complex Criteria Using the key Parameter

xvii
xxi
xxiii

Ol DN — i

11
21

24
28
30
32
35

43
43
46
48
52



xii Contents

Item 15: Be Cautious When Relying on dict

Insertion Ordering 58
Item 16: Prefer get Over in and KeyError to

Handle Missing Dictionary Keys 65
Item 17: Prefer defaultdict Over setdefault to

Handle Missing Items in Internal State 70
Item 18: Know How to Construct Key-Dependent

Default Values with __missing__ 73

Chapter 3 Functions V i

Item 19: Never Unpack More Than Three Variables

When Functions Return Multiple Values 7.4
Item 20: Prefer Raising Exceptions to Returning None 80
Item 21: Know How Closures Interact with Variable Scope 83
Item 22: Reduce Visual Noise with Variable

Positional Arguments 87
Item 23: Provide Optional Behavior with Keyword Arguments 90
Item 24: Use None and Docstrings to Specify

Dynamic Default Arguments 94
Item 25: Enforce Clarity with Keyword-Only and

Positional-Only Arguments 97
Item 26: Define Function Decorators with functools.wraps 102

Chapter 4 Comprehensions and Generators 107

Item 27: Use Comprehensions Instead of map and filter 107
Item 28: Avoid More Than Two Control Subexpressions in

Comprehensions 109
Item 29: Avoid Repeated Work in Comprehensions by Using

Assignment Expressions 111
Item 30: Consider Generators Instead of Returning Lists 1114
Item 31: Be Defensive When Iterating Over Arguments 117
Item 32: Consider Generator Expressions for Large List

Comprehensions 122
Item 33: Compose Multiple Generators with yield from 124
Item 34: Avoid Injecting Data into Generators with send 127
Item 35: Avoid Causing State Transitions in

Generators with throw 133



Item 36:

Contents

Consider itertools for Working with Iterators
and Generators

Chapter 5 Classes and Interfaces

Item 37:

Item 38:

Item 39:

Item 40:
Item 41:

Item 42:
Item 43:

Compose Classes Instead of Nesting
Many Levels of Built-in Types

Accept Functions Instead of Classes for
Simple Interfaces

Use @classmethod Polymorphism to
Construct Objects Generically

Initialize Parent Classes with super

Consider Composing Functionality
with Mix-in Classes

Prefer Public Attributes Over Private Ones

Inherit from collections.abc for
Custom Container Types

Chapter 6 Metaclasses and Attributes

Item 44

Item 45:

Item 46:
Item 47

Item 48:
Item 49:
Item 50:
Item 51:

Use Plain Attributes Instead of Setter and
Getter Methods

Consider @property Instead of
Refactoring Attributes

Use Descriptors for Reusable @property Methods

Use __getattr__, __getattribute__, and
_setattr__ for Lazy Attributes

Validate Subclasses with __init_subclass__
Register Class Existence with __init_subclass__
Annotate Class Attributes with __set_name__

Prefer Class Decorators Over Metaclasses for
Composable Class Extensions

Chapter 7 Concurrency and Parallelism

Item 52:
Item 53:
Item 54:
Item 55:
Item 56:

Use subprocess to Manage Child Processes

Use Threads for Blocking I/0O, Avoid for Parallelism
Use Lock to Prevent Data Races in Threads

Use Queue to Coordinate Work Between Threads

Know How to Recognize When Concurrency
Is Necessary

xiii

138
145
145
152

155
160

165
170

175
181
181

186
190

195
201
208
214

218

225
226
230
235
238

248



xiv Contents

Item 57:

Item 58:

Item 59:

Item 60:
Item 61:
Item 62:

Item 63:

Item 64:

Avoid Creating New Thread Instances for
On-demand Fan-out

Understand How Using Queue for
Concurrency Requires Refactoring

Consider ThreadPoolExecutor When Threads
Are Necessary for Concurrency

Achieve Highly Concurrent 1/0 with Coroutines
Know How to Port Threaded I/O to asyncio

Mix Threads and Coroutines to Ease the
Transition to asyncio

Avoid Blocking the asyncio Event Loop to
Maximize Responsiveness

Consider concurrent.futures for True Parallelism

Chapter 8 Robustness and Performance

Item 65:

Item 66:

Item 67:
Item 68:
Item 69:
Item 70:
Item 71:
Item 72:
Item 73:
Item 74:

Take Advantage of Each Block in try/except
/else/finally

Consider contextlib and with Statements
for Reusable try/finally Behavior

Use datetime Instead of time for Local Clocks
Make pickle Reliable with copyreg

Use decimal When Precision Is Paramount -
Profile Before Optimizing

Prefer deque for Producer-Consumer Queues
Consider Searching Sorted Sequences with bisect
Know How to Use heapq for Priority Queues

Consider memoryview and bytearray for
Zero-Copy Interactions with bytes

Chapter 9 Testing and Debugging

Item 75:
Item 76:
Item 77:

Item 78:

Use repr Strings for Debugging Output
Verify Related Behaviors in TestCase Subclasses

Isolate Tests from Each Other with setUp,
tearDown, setUpModule, and tearDownModule

Use Mocks to Test Code with
Complex Dependencies

252
257

264
266
271

282

289
292

299
299

304
308
312
319
322
326
334
336

346
353
354
357

365

367



Contents b 44

Item 79: Encapsulate Dependencies to Facilitate

Mocking and Testing 375
Item 80: Consider Interactive Debugging with pdb 379
Item 81: Use tracemalloc to Understand Memory

Usage and Leaks 384

Chapter 10 Collaboration 389

Item 82: Know Where to Find Community-Built Modules 389
Item 83: Use Virtual Environments for Isolated and

Reproducible Dependencies 390
Item 84: Write Docstrings for Every Function,

Class, and Module 396
Item 85: Use Packages to Organize Modules and

Provide Stable APIs 401
Item 86: Consider Module-Scoped Code to

Configure Deployment Environments 406
Item 87: Define a Root Exception to Insulate

Callers from APIs 408
Item 88: Know How to Break Circular Dependencies 413

Item 89: Consider warnings to Refactor and Migrate Usage 418
Item 90: Consider Static Analysis via typing to Obviate Bugs 425

Index 435



