Table of Contents

Preface

Chapter 1: Benchmarking and Profiling
Designing your application
Writing tests and benchmarks

Timing your benchmark

Better tests and benchmarks with pytest-benchmark
Finding bottlenecks with cProfile
Profile line by line with line_profiler
Optimizing our code
The dis module
Profiling memory usage with memory_profiler
Summary

Chapter 2: Pure Python Optimizations
Useful algorithms and data structures
Lists and deques
Dictionaries
Building an in-memory search index using a hash map
Sets
Heaps
Tries
Caching and memoization
Joblib
Comprehensions and generators
Summary

Chapter 3: Fast Array Operations with NumPy and Pandas

Getting started with NumPy

Creating arrays

Accessing arrays

Broadcasting

Mathematical operations

Calculating the norm
Rewriting the particle simulator in NumPy
Reaching optimal performance with numexpr
Pandas

Pandas fundamentals

Indexing Series and DataFrame objects
Database-style operations with Pandas

10
16
18
21
24
29
31
33
34
37

39
40
41
43
45
47
48
50
52
55
56
58

59
60
60
62
67
70
71
71
75
77
77
79
81

Table of Contents

Mapping
Grouping, aggregations, and transforms
Joining
Summary
Chapter 4: C Performance with Cython
Compiling Cython extensions
Adding static types
Variables
Functions
Classes
Sharing declarations
Working with arrays
C arrays and pointers
NumPy arrays
Typed memoryviews
Particle simulator in Cython
Profiling Cython
Using Cython with Jupyter
Summary

Chapter 5: Exploring Compilers
Numba
First steps with Numba
Type specializations
Object mode versus native mode
Numba and NumPy
Universal functions with Numba
Generalized universal functions
JIT classes
Limitations in Numba
The PyPy project
Setting up PyPy
Running a particle simulator in PyPy
Other interesting projects
Summary

Chapter 6: Implementing Concurrency
Asynchronous programming
Waiting for 1/0
Concurrency
Callbacks
Futures
Event loops
The asyncio framework
Coroutines

[ii]

82
84
86
88

89
89
92
92

95
97
98
98
101
102
104
108
112
115

117
118
118
120
121
124
124
126
129
132
133
134
138
136
137

139
140
140
141
143
146
148
151
152

Table of Contents

Converting blocking code into non-blocking code
Reactive programming

Observables

Useful operators

Hot and cold observables

Building a CPU monitor
Summary

Chapter 7: Parallel Processing

Introduction to parallel programming

Graphic processing units
Using multiple processes

The Process and Pool classes

The Executor interface

Monte Carlo approximation of pi

Synchronization and locks
Parallel Cython with OpenMP
Automatic parallelism

Getting started with Theano

Profiling Theano-

Tensorflow

Running code on a GPU
Summary

Chapter 8: Advanced Introduction to Concurrent and Parallel
Programming

Technical requirements
What is concurrency?
Concurrent versus sequential

Example 1 — checking whether a non-negative number is prime

Concurrent versus parallel
A quick metaphor
Not everything should be made concurrent
Embarrassingly parallel
Inherently sequential
Example 2 — inherently sequential tasks
I/0 bound
The history, present, and future of concurrency
The history of concurrency
The present
The future
A brief overview of mastering concurrency in Python
Why Python?
Setting up your Python environment
General setup

Summary

156
158
158
161
165
168
171

173
174
176
177
178
180
181
184
187
189
190
195
197
199
203

205
206
206
206
207
210
211
211
212
212
213
215
215
216
217
219
221
222
224
224

225

[iii]

Table of Contenta

Questions
Further reading

Chapter 9: Amdahl's Law
Technical requirements
Amdahl's Law

Terminology
Formula and interpretation
The formula for Amdahl's Law
A quick example
Implications

Amdahl's Law's relationship to the law of diminishing returns

How to simulate in Python

Practical applications of Amdahl's Law
Summary

Questions

Further reading

Chapter 10: Working with Threads in Python
Technical requirements
The concept of a thread
Threads versus processes
Multithreading
An example in Python
An overview of the threading module
The thread module in Python 2
The threading module in Python 3
Creating a new thread in Python
Starting a thread with the thread module
Starting a thread with the threading module
Synchronizing threads
The concept of thread synchronization
The threading.Lock class
An example in Python
Multithreaded priority queue
A connection between real-life and programmatic queues
The queue module
Queuing in concurrent programming
Multithreaded priority queue
Summary
Questions
Further reading

Chapter 11: Using the with Statement in Threads
Technical requirements

226
226

227
227
228
228
229
229
230
230
231
232
236
237
238
238

239
240
240
240
241
243
247
247
247
248
249
251
254
254
255
255
257
257
258
259
263
264
265
265

267
267

[iv]

Table of Contents

Context management
Starting from managing files
The with statement as a context manager
The syntax of the with statement

The with statement in concurrent programming
Example of deadlock handling

“Summary

Questions

Further reading

Chapter 12: Concurrent Web Requests
Technical requirements
The basics of web requests
HTML
HTTP requests
HTTP status code
The requests module
Making a request in Python
Running a ping test
Concurrent web requests
Spawning multiple threads
Refactoring request logic
The problem of timeout
Support from httpstat.us and simulation in Python
Timeout specifications
Good practices in making web requests
Consider the terms of service and data-collecting policies
Error handling
Update your program regularly
Avoid making a large number of requests
Summary
Questions
Further reading

Chapter 13: Working with Processes in Python
Technical requirements
The concept of a process
Processes versus threads
Multiprocessing
Introductory example in Python
An overview of the multiprocessing module
The process class
The Pool class
Determining the current process, waiting, and terminating processes
Determining the current process

[v1]

268
268
269
271
271
272
274
274
275

277
277
278
278
280
281
282
283
285
286
287
289
291
291
292
296
296
296
297
297
299
299
299

301
302
302
304
305
307
309
309
310
311
311

Table of Contents

Waiting for processes
Terminating processes
Interprocess communication
Message passing for a single worker
Message passing between several workers
Summary
Questions
Further reading

Chapter 14: Reduction Operators in Processes
Technical requirements
The concept of reduction operators
Properties of a reduction operator
Examples and non-examples
Example implementation in Python

Real-life applications of concurrent reduction operators

Summary
Questions
Further reading

Chapter 15: Concurrent Image Processing
Technical requirements
Image processing fundamentals
Python as an image processing tool
Installing OpenCV and NumPy
Computer image basics
RGB values
Pixels and image files
Coordinates inside an image
OpenCV API
Image processing techniques
Grayscaling
Thresholding

Applying concurrency to image processing

Good concurrent image processing practices
Choosing the correct way (out of many)
Spawning an appropriate number of processes
Processing input/output concurrently

Summary

Questions

Further reading

Chapter 16: Introduction to Asynchronous Programming
Technical requirements
A quick analogy
Asynchronous versus other programming models

314
317
317
318
320
326
327
327

329
329
330
330
331
333
338
338
339
339

341
341
342
342
343
344

345
345
346
348

351
356
360
360
363
363
363
364
364
365
365
366
367

[vi]

Table of Contents

Asynchronous versus synchronous programming
Asynchronous versus threading and multiprocessing
An example in Python
Summary
Questions
Further reading

Chapter 17: Implementing Asynchronous Programming in Python
Technical requirements
The asyncio module
Coroutines, event loops, and futures
Asyncio API
The asyncio framework in action
Asynchronously counting down
A note about blocking functions
Asynchronous prime-checking
Improvements from Python 3.7
Inherently blocking tasks
concurrent.futures as a solution for blocking tasks
Changes in the framework
Examples in Python
Summary
Questions
Further reading

Chapter 18: Building Communication Channels with asyncio
Technical requirements
The ecosystem of communication channels
Communication protocol layers
Asynchronous programming for communication channels
Transports and protocols in asyncio
The big picture of asyncio's server client
Python example
Starting a server
Installing Telnet
Simulating a connection channel
Sending messages back to clients
Closing the transports
Client-side communication with aiohttp
Installing aiohttp and aiofiles
Fetching a website's HTML code
Writing files asynchronously
Summary
Questions
Further reading

368
369
370
373
373
374

375
375
376
376
378
379
380
384
385
389
390
391
392
392
396
397
398

399
400
400
400
402
403
405
406
406
408
409
410
411
413
414
414
416
418
419
419

[vii]

Table of Contents

Chapter 19: Deadlocks

Technical requirements

The concept of deadlock
The Dining Philosophers problem
Deadlock in a concurrent system
Python simulation

Approaches to deadlock situations
Implementing ranking among resources
Ignoring locks and sharing resources

An additional note about locks
Concluding note on deadlock solutions

The concept of livelock
Summary

Questions

Further reading

Chapter 20: Starvation
Technical requirements
The concept of starvation
What is starvation?
Scheduling
Causes of starvation
Starvation's relationship to deadlock
The readers-writers problem
Problem statement
The first readers-writers problem
The second readers-writers problem
The third readers-writers problem
Solutions to starvation
Summary
Questions
Further reading

Chapter 21: Race Conditions

Technical requirements

The concept of race conditions
Critical sections
How race conditions occur

Simulating race conditions in Python

Locks as a solution to race conditions
The effectiveness of locks
Implementation in Python
The downside of locks

Turning a concurrent program sequential
Locks do not lock anything

421
421
422
422
425
426
430
430
436
438
439
439
442
442
442

443
443
444
444
445
446
447
448
448
449
453
456
458
459
460
460

461
461
462
462
463
465
467
467
469
470

471
473

[viii]

Table of Contents

Race conditions in real life 474
Security 474
Operating systems 475
Networking 476

Summary 477

Questions 477

Further reading 478

Chapter 22: The Global Interpreter Lock 479

Technical requirements 479

An introduction to the Global Interpreter Lock 480
An analysis of memory management in Python 480
The problem that the GIL addresses 483
Problems raised by the GIL 484

The potential removal of the GIL from Python 486

How to work with the GIL 486
Implementing multiprocessing, rather than multithreading 487
Getting around the GIL with native extensions 489
Utilizing a different Python interpreter 489

Summary : 489

Questions 490

Further reading 490

Chapter 23: The Factory Pattern 491

The factory method 492
Real-world examples 493
Use cases 493
Implementing the factory method 494

The abstract factory 502
Real-world examples 502
Use cases 503
Implementing the abstract factory pattern 503

Summary 508

Chapter 24: The Builder Pattern 509

Real-world examples 510

Use cases 511

Implementation 515

Summary 521

Chapter 25: Other Creational Patterns 523

The prototype pattern 524
Real-world examples 524
Use cases 525
Implementation 525

Singleton 529

[ix]

Table of Contents

Real-world examples

Use cases

Implementation
Summary

Chapter 26: The Adapter Pattern
Real-world examples
Use cases
Implementation
Summary

Chapter 27: The Decorator Pattern
Real-world examples
Use cases
Implementation
Summary

Chapter 28: The Bridge Pattern
Real-world examples
Use cases
Implementation
Summary

Chapter 29: The Facade Pattern
Real-world examples
Use cases
Implementation
Summary

Chapter 30: Other Structural Patterns
The flyweight pattern
Real-world examples
Use cases
Implementation
The model-view-controller pattern
Real-world examples
Use cases
Implementation
The proxy pattern
Real-world examples
Use cases
Implementation
Summary

Chapter 31: The Chain of Responsibility Pattern
Real-world examples

529
530
530
535

8§37
537
538
538
541

543

544
545
550

551
551
552
552
556

557
558
558
559
563

565
566
567
567
568
573
574
575
576
580
583
583
584
588

589
590

[x]

Table of Contents

Use cases 592
Implementation 593
Summary 598
Chapter 32: The Command Pattern 599
Real-world examples 600
Use cases 600
Implementation 601
Summary 609
Chapter 33: The Observer Pattern 611
Real-world examples 611
Use cases 612
Implementation 613
Summary 619
Appendix 621

Other Books You May Enjoy

641

Index

645

[xi]

