

Contents

Chapter 1 Heterogeneous Catalytic Ozonation over Metal Oxides and Mechanism Discussion

Na Tian, Yulun Nie, Xike Tian, Jialu Zhu and Dong Wu

1.1	Introduction	1
1.1.1	Typical Transition Metal Oxides as Ozonation Catalysts	2
1.1.2	Catalytic Ozonation over Other Single Metal Oxides	10
1.1.3	Mixed Metal Oxides for Catalytic Ozonation	18
1.1.4	Summary	24
	References	24

Chapter 2 Heterogeneous Catalytic Ozonation over Supported Metal Oxides

29

Zhaokun Xiong, Yang Liu, Peng Zhou, Heng Zhang, and Bo Lai

2.1	Typical Supported Metal Oxides as Ozonation Catalysts	30
2.1.1	Metal Oxides/Al ₂ O ₃	30
2.1.2	Metal Oxides/TiO ₂	31
2.1.3	Metal Oxides/Zeolites	32
2.1.4	Metal Oxides Supported on Other Porous Materials	34

2.2	Effects of Operation Parameters on Catalytic Ozonation Efficiency	35
2.2.1	Initial pH	35
2.2.2	Ozone Dosage	36
2.2.3	Catalyst Dosage	37
2.2.4	Initial Concentration of Contaminants	37
2.2.5	Reaction Temperature	38
2.2.6	Coexisting Ions in Water	38
2.3	Catalytic Reaction Mechanisms	39
2.3.1	The Circumstance of Radical and Non-radical Pathways	39
2.3.2	Identification of Catalytic Active Sites	42
2.3.3	Mechanism Analysis by Theoretical Calculation	44
2.4	Practical Applications	47
2.4.1	Application Case	48
2.4.2	Limitations in Practical Applications	48
2.5	Summary	51
	Acknowledgements	51
	References	52
Chapter 3	Catalytic Ozonation over Composite Metal Oxides	56
	<i>Rodrigo Pereira Cavalcante and Renato Falcao Dantas</i>	
3.1	Introduction	56
3.2	Perovskite-type Catalysts	58
3.3	Spinel-like Oxide-type Catalysts	64
3.4	Other Natural Minerals	71
3.5	Concluding Remarks and Future Trend	77
3.5.1	Perovskite Oxides	78
3.5.2	Spinel Oxide	78
3.5.3	Natural Minerals	78
	Acknowledgements	79
	References	79
Chapter 4	Catalytic Ozonation over Activated Carbon-based Materials	85
	<i>Zheng-Qian Liu, Jia-Ying Li and Shu-Ting Li</i>	
4.1	Activated Carbon	85
4.1.1	Adsorption or Catalysis During Ozonation with AC?	85
4.1.2	Influence of Chemical Properties, Texture Characteristics and Impurities	89

4.1.3	Influence of Water Matrix	91
4.1.4	Deactivation and Regeneration of Activated Carbon	93
4.2	Activated Carbon-supported Metal Oxides	95
4.2.1	Single-metal Oxides	95
4.2.2	Bimetallic Oxides	98
4.3	Biochar-based Materials	101
4.3.1	Biochar	101
4.3.2	Biochar-supported Metal Oxides	104
4.4	Reaction Mechanisms	107
4.4.1	Brief Description of Several Viewpoints	107
4.4.2	Reactive Oxygen Species and Intermediates Formation	108
4.4.3	Hydroxyl Radical Mechanism	111
4.5	Practical Applications	116
	Acknowledgements	117
	References	117

Chapter 5 Catalytic Ozonation over Nanocarbon Materials

123

Ya Liu and Yuxian Wang

5.1	Introduction	123
5.2	Carbon Nanotube-based Metal-free Nanocarbons	124
5.3	Graphene-based Metal-free Nanocarbons	129
5.4	Other Types of Metal-free Nanocarbons	134
5.5	Active Sites on Metal-free Nanocarbons	141
5.5.1	Carbon Framework and Dimensional Effect	141
5.5.2	Surface Oxygen Functionalities	142
5.5.3	Edging and Structural Defects	143
5.5.4	Heteroatom Dopants	145
5.6	Active Sites on Supported Nanocarbons	147
5.7	Methods to Probe the Active Sites on Nanocarbons	147
5.8	Oxidation Pathways in Metal-free Nanocarbon Catalyzed Ozonation	149
5.8.1	Radical-based Oxidations	149
5.8.2	Nonradical Oxidations	152
5.8.3	Identification of the Types of ROS and Evaluation of Their Roles	155
5.8.4	Critical Issues in Determination of the Oxidation Pathways	159
5.9	Conclusions and Perspectives	159
	Acknowledgements	160
	References	160

Chapter 6 UVA Photocatalytic Ozonation of Water Contaminants	166
<i>F. J. Beltrán and O. Gimeno</i>	
6.1 Introduction	166
6.2 Ozonation of Water Contaminants	167
6.3 Photocatalytic Oxidation of Water Contaminants	168
6.4 Photocatalytic Ozonation	170
6.5 UVA Photocatalytic Ozonation	171
6.5.1 Catalysts	171
6.5.2 Radiation Sources	187
6.5.3 Reactor Type	189
6.5.4 Organics Studied and Water Matrices	191
6.5.5 AOP Comparison, Influence of Variables	195
6.5.6 Ozone Consumption, R_{ct} , R_{HOO_3} , Scavengers	198
6.5.7 Synergism	201
6.5.8 Mechanisms of Reactions	202
6.5.9 Kinetics	203
6.5.10 Energy and Cost	207
6.5.11 Other Aspects	209
6.6 Conclusions	211
Acknowledgements	212
References	212
Chapter 7 Visible-light-driven Photocatalytic Ozonation of Aqueous Organic Pollutants	218
<i>Jiadong Xiao, Zhuang Guo, Hongbin Cao and Yongbing Xie</i>	
7.1 Introduction	218
7.2 Overview of the Catalysts and Their Performances	219
7.3 Reaction Mechanism	224
7.4 Structure–Performance Relationship of Catalysts	228
7.4.1 WO_3	228
7.4.2 $g\text{-}C_3N_4$	231
7.4.3 Future Design and Optimization of $g\text{-}C_3N_4$	233
7.5 Stability of $g\text{-}C_3N_4$ Catalysts	235
7.6 Present State and Challenges for Practical Application	236
7.7 Conclusions	237
Acknowledgements	238
References	238

Chapter 8	Catalytic Peroxone Process and the Coupled Processes	241
<i>Zhuang Guo, Yongbing Xie and Hongbin Cao</i>		
8.1	Introduction	241
8.1.1	Mechanism	242
8.1.2	Application	243
8.1.3	Drawbacks	246
8.2	Catalysts in Peroxone Process	246
8.2.1	Traditional Metal Catalysts	246
8.2.2	Single-atom Catalysts	250
8.3	Enhancement by Other Processes	252
8.3.1	Photolysis and Photocatalysis	253
8.3.2	Sonolysis	254
8.3.3	Plasma	255
8.4	Conclusions	255
	References	256
Chapter 9	Promising Electrocatalytic Ozonation Processes for Water and Wastewater Treatment	258
<i>Huijiao Wang, Weikun Yao, Juhong Zhan, Gang Yu and Yujue Wang</i>		
9.1	Introduction	258
9.2	Mechanisms of Electrocatalytic Ozonation	262
9.2.1	Mechanisms of $\cdot\text{OH}$ Generation	262
9.2.2	Mechanisms of Pollutant Abatement	264
9.3	Cathode Studies During the E-peroxone Process	264
9.3.1	Cathode Materials	264
9.3.2	Cathode Configuration	265
9.3.3	Cathode Stability	267
9.4	Water and Wastewater Treatment by the E-peroxone Process	268
9.4.1	Removal of Organic Pollutants	268
9.4.2	Control of Harmful Oxidation By-products	268
9.4.3	Disinfection and Removal of Antibiotic Resistance Genes (ARGs)	278
9.4.4	Pilot-scale Study	279
9.5	Integration of the E-peroxone Process with Other Technologies	280
9.5.1	Combination with UV Photolysis	280
9.5.2	Combination with Adsorption	281
9.5.3	Combination with Membrane	282
9.5.4	Combination with Electrocoagulation	283

9.6 Challenges and Prospects	284
9.6.1 Challenges	284
9.6.2 Prospects	285
Acknowledgements	286
References	286
Chapter 10 Catalytic Ozonation with Ultrasound	293
<i>Lei Zhao</i>	
10.1 Introduction	293
10.2 Fundamental Characteristics of Ultrasound	294
10.2.1 Generation of Ultrasound	294
10.2.2 Typical Reactors Applied	295
10.3 Reactivity of Compounds	300
10.3.1 Phenols	300
10.3.2 Aromatics	303
10.3.3 Dyes	303
10.3.4 Antibiotics	305
10.3.5 Industrial Wastewater	305
10.4 Reaction Kinetics	306
10.5 Influencing Factors	306
10.5.1 Ultrasonic Power Density	306
10.5.2 Frequency	306
10.5.3 The Concentration of Ozone	308
10.5.4 pH	308
10.5.5 Temperature	308
10.6 Combined Processes	309
10.6.1 Homogeneous	309
10.6.2 Heterogeneous	310
10.7 Enhanced Mechanism	310
References	311
Chapter 11 Hybrid Ceramic Membrane Catalytic Ozonation	313
<i>Zilong Song, Ruijun Ren, Yuting Zhang, Ao Li, Jing Liu and Fei Qi</i>	
11.1 Introduction	313
11.2 Coupling of Ceramic Membranes with Ozonation	314
11.2.1 Effect of Ozone Coupling Mode on EfOM Removal	315
11.2.2 Effects of Pre-O/F and <i>In-situ</i> -O/F on Membrane Fouling	316
11.2.3 Membrane Fouling Mitigation Mechanism	316

11.3	Coupling of Catalytic Ceramic Membranes with Ozonation	318
11.3.1	Kinds of Catalytic Ceramic Membranes and Corresponding Fabrication Methods	318
11.3.2	Reaction Mechanism	323
11.3.3	Fe-based Catalytic Ceramic Membranes	325
11.3.4	Mn-based Catalytic Ceramic Membranes	329
11.3.5	Ce-based Catalytic Ceramic Membranes	332
11.3.6	Cu-based Catalytic Ceramic Membranes	333
11.3.7	Hybrid Metal-oxide-based Catalytic Ceramic Membranes	334
11.3.8	Carbon-based Catalytic Ceramic Membranes	338
11.4	Conclusions and Outlook	346
	Acknowledgements	347
	References	347
Chapter 12	Ozonation Nanobubble Technology	353
	<i>Xiaonan Shi, Taha Marhaba and Wen Zhang</i>	
12.1	Introduction to Water Disinfection and Ozonation Disinfection	353
12.1.1	Principles of Ozonation Disinfection	353
12.1.2	Limitations of Traditional Ozonation Disinfection	354
12.2	Nanobubbles and Generation Principles of Ozone Nanobubbles	355
12.2.1	Nanobubbles and Their Applications	355
12.2.2	Ozone Nanobubble Generation Methods	356
12.3	Ozone Nanobubble Properties and Applications	358
12.3.1	Stability and Disinfection Characteristics of Ozone Nanobubbles	358
12.3.2	Mass Transfer of Ozonation	359
12.3.3	Enhanced Reactivity of Ozone Nanobubbles	361
12.3.4	Applications of Ozone Nanobubbles	361
12.4	Future Research Directions	362
12.4.1	Industrialized Ozone Nanobubble Generator Development	362
12.4.2	Safety Concerns of Ozone Nanobubbles	363
	Acknowledgements	364
	References	364
Subject Index		371