

---

# Contents

---

|              |      |
|--------------|------|
| Foreword     | xxi  |
| Preface      | xxv  |
| Nomenclature | xxxi |

## PART I **Prelude**

|         |                              |    |
|---------|------------------------------|----|
| CHAPTER | 1 ■ Introduction to BPS      | 3  |
| 1.1     | WHAT IS BPS?                 | 4  |
| 1.2     | HOW DOES IT WORK?            | 6  |
| 1.3     | WHAT IS IT USED FOR?         | 8  |
| 1.4     | BPS TOOLS AND USERS          | 9  |
| 1.5     | A BRIEF HISTORY OF BPS       | 9  |
| 1.6     | IS BPS VALID?                | 15 |
| 1.7     | REQUIRED READING             | 17 |
| 1.8     | SOURCES FOR FURTHER LEARNING | 18 |
| 1.9     | SIMULATION EXERCISES         | 19 |
| 1.10    | CLOSING REMARKS              | 29 |

## PART II **Building interior**

|         |                                                |    |
|---------|------------------------------------------------|----|
| CHAPTER | 2 ■ Energy and mass transfers within buildings | 33 |
| 2.1     | SIGNIFICANT PROCESSES                          | 34 |
| 2.2     | THE THERMAL ZONE                               | 35 |
| 2.3     | FORMING ENERGY AND MASS BALANCES               | 39 |
| 2.4     | ZONE MASS BALANCE ON DRY AIR                   | 39 |

|                |                                                           |           |
|----------------|-----------------------------------------------------------|-----------|
| 2.5            | ZONE MASS BALANCE ON WATER VAPOUR                         | 41        |
| 2.6            | ZONE ENERGY BALANCE                                       | 42        |
| 2.7            | ENERGY BALANCE AT INTERNAL SURFACES                       | 46        |
| 2.8            | SOLVING THE ENERGY AND MASS BALANCES                      | 48        |
| 2.9            | REQUIRED READING                                          | 50        |
| 2.10           | SOURCES FOR FURTHER LEARNING                              | 50        |
| 2.11           | SIMULATION EXERCISES                                      | 51        |
| 2.12           | CLOSING REMARKS                                           | 55        |
| <b>CHAPTER</b> | <b>3 ■ Solar energy absorption by internal surfaces</b>   | <b>57</b> |
| 3.1            | SOLAR PROCESSES RELEVANT TO BUILDINGS                     | 58        |
| 3.2            | SOLAR RADIATION BASICS                                    | 58        |
| 3.3            | MODELLING APPROACH                                        | 62        |
| 3.4            | DISTRIBUTION OF SOLAR BEAM IRRADIANCE                     | 64        |
| 3.5            | DISTRIBUTION OF DIFFUSE AND REFLECTED SOLAR IRRADIANCE    | 68        |
| 3.6            | REQUIRED READING                                          | 68        |
| 3.7            | SOURCES FOR FURTHER LEARNING                              | 69        |
| 3.8            | SIMULATION EXERCISES                                      | 70        |
| 3.9            | CLOSING REMARKS                                           | 71        |
| <b>CHAPTER</b> | <b>4 ■ Convective heat transfer at internal surfaces</b>  | <b>73</b> |
| 4.1            | MODELLING APPROACH                                        | 74        |
| 4.2            | CONVECTION HEAT TRANSFER BASICS                           | 74        |
| 4.3            | CONVECTIVE REGIMES WITHIN BUILDINGS                       | 76        |
| 4.4            | CONVECTION CORRELATIONS FOR BUILDINGS                     | 77        |
| 4.5            | COMMON APPROACHES FOR DETERMINING CONVECTION COEFFICIENTS | 78        |
| 4.6            | REQUIRED READING                                          | 79        |
| 4.7            | SOURCES FOR FURTHER LEARNING                              | 80        |
| 4.8            | SIMULATION EXERCISES                                      | 80        |
| 4.9            | CLOSING REMARKS                                           | 82        |

|         |                                                            |     |
|---------|------------------------------------------------------------|-----|
| CHAPTER | 5 ■ Longwave radiation exchange between internal surfaces  | 83  |
| 5.1     | RADIATION BETWEEN INTERNAL SURFACES                        | 84  |
| 5.2     | EMISSION OF LONGWAVE RADIATION                             | 84  |
| 5.3     | RADIATIVE PROPERTIES                                       | 87  |
| 5.4     | VIEW FACTORS                                               | 90  |
| 5.5     | ENCLOSURE THEORY                                           | 91  |
| 5.6     | CALCULATING EXCHANGE BETWEEN SURFACES                      | 93  |
| 5.7     | DETERMINING VIEW FACTORS                                   | 97  |
| 5.8     | LINEARIZATION AND SIMPLIFICATIONS                          | 99  |
| 5.9     | REQUIRED READING                                           | 101 |
| 5.10    | SOURCES FOR FURTHER LEARNING                               | 101 |
| 5.11    | SIMULATION EXERCISES                                       | 102 |
| 5.12    | CLOSING REMARKS                                            | 103 |
| CHAPTER | 6 ■ Internal heat and moisture sources                     | 105 |
| 6.1     | HEAT AND MOISTURE SOURCE TERMS IN MASS AND ENERGY BALANCES | 106 |
| 6.2     | SOURCES OF HEAT AND MOISTURE IN BUILDINGS                  | 106 |
| 6.3     | MAGNITUDE OF GAINS                                         | 107 |
| 6.4     | TEMPORAL VARIATION OF GAINS                                | 109 |
| 6.5     | OCCUPANT BEHAVIOUR                                         | 110 |
| 6.6     | REQUIRED READING                                           | 112 |
| 6.7     | SOURCES FOR FURTHER LEARNING                               | 113 |
| 6.8     | SIMULATION EXERCISES                                       | 113 |
| 6.9     | CLOSING REMARKS                                            | 115 |
| CHAPTER | 7 ■ Internal airflow                                       | 117 |
| 7.1     | TRANSFER OF AIR BETWEEN ZONES                              | 118 |
| 7.2     | OPTIONS FOR TREATING TRANSFER AIR                          | 118 |
| 7.3     | VENTILATION MODELS                                         | 119 |
| 7.4     | REQUIRED READING                                           | 120 |
| 7.5     | SOURCES FOR FURTHER LEARNING                               | 121 |

|     |                      |     |
|-----|----------------------|-----|
| 7.6 | SIMULATION EXERCISES | 121 |
| 7.7 | CLOSING REMARKS      | 122 |

## PART III Exterior environment

|         |                                                    |     |
|---------|----------------------------------------------------|-----|
| CHAPTER | 8 ■ Energy balances at external surfaces & weather | 127 |
| 8.1     | ENERGY BALANCE AT EXTERNAL SURFACES                | 128 |
| 8.2     | INFLUENCE OF ENVIRONMENTAL CONDITIONS              | 130 |
| 8.3     | WEATHER FILES AND THEIR LIMITATIONS                | 130 |
| 8.4     | WHICH WEATHER FILE?                                | 135 |
| 8.5     | SOURCES OF WEATHER FILES                           | 137 |
| 8.6     | REQUIRED READING                                   | 138 |
| 8.7     | SOURCES FOR FURTHER LEARNING                       | 139 |
| 8.8     | SIMULATION EXERCISES                               | 139 |
| 8.9     | CLOSING REMARKS                                    | 142 |
| CHAPTER | 9 ■ Solar energy absorption by external surfaces   | 145 |
| 9.1     | MODELLING APPROACH                                 | 146 |
| 9.2     | BEAM AND DIFFUSE IRRADIANCE TO THE HORIZONTAL      | 147 |
| 9.3     | BEAM IRRADIANCE TO A BUILDING SURFACE              | 150 |
| 9.4     | DIFFUSE IRRADIANCE TO A BUILDING SURFACE           | 152 |
| 9.5     | GROUND-REFLECTED IRRADIANCE TO A BUILDING SURFACE  | 156 |
| 9.6     | SHADING                                            | 158 |
| 9.7     | REQUIRED READING                                   | 159 |
| 9.8     | SOURCES FOR FURTHER LEARNING                       | 160 |
| 9.9     | SIMULATION EXERCISES                               | 161 |
| 9.10    | CLOSING REMARKS                                    | 163 |
| CHAPTER | 10 ■ Convection heat transfer at external surfaces | 165 |
| 10.1    | MODELLING APPROACH                                 | 166 |
| 10.2    | CONVECTION CORRELATIONS                            | 166 |
| 10.3    | LOCAL WIND SPEED AND USER OPTIONS                  | 168 |

|                |                                                              |            |
|----------------|--------------------------------------------------------------|------------|
| 10.4           | REQUIRED READING                                             | 169        |
| 10.5           | SOURCES FOR FURTHER LEARNING                                 | 170        |
| 10.6           | SIMULATION EXERCISES                                         | 171        |
| 10.7           | CLOSING REMARKS                                              | 172        |
| <b>CHAPTER</b> | <b>11 ▪ Longwave radiation exchange at external surfaces</b> | <b>175</b> |
| 11.1           | MODELLING APPROACH                                           | 176        |
| 11.2           | CALCULATING LONGWAVE EXCHANGE                                | 177        |
| 11.3           | EFFECTIVE TEMPERATURES AND VIEW FACTORS                      | 178        |
| 11.4           | SKY TEMPERATURE                                              | 180        |
| 11.5           | REQUIRED READING                                             | 182        |
| 11.6           | SOURCES FOR FURTHER LEARNING                                 | 184        |
| 11.7           | SIMULATION EXERCISES                                         | 184        |
| 11.8           | CLOSING REMARKS                                              | 186        |
| <b>CHAPTER</b> | <b>12 ▪ Heat transfer to the ground</b>                      | <b>189</b> |
| 12.1           | MODELLING GROUND HEAT TRANSFER                               | 190        |
| 12.2           | DETAILED NUMERICAL METHODS                                   | 191        |
| 12.3           | ADDING SOIL TO BELOW-GRADE ENVELOPE CONSTRUCTIONS            | 194        |
| 12.4           | REGRESSION AND ANALYTICAL APPROACHES                         | 195        |
| 12.5           | SIMPLIFIED APPROXIMATIONS                                    | 197        |
| 12.6           | REQUIRED READING                                             | 198        |
| 12.7           | SOURCES FOR FURTHER LEARNING                                 | 199        |
| 12.8           | SIMULATION EXERCISES                                         | 200        |
| 12.9           | CLOSING REMARKS                                              | 201        |
| <b>PART IV</b> | <b>Building envelope</b>                                     |            |
| <b>CHAPTER</b> | <b>13 ▪ Heat transfer in opaque assemblies</b>               | <b>205</b> |
| 13.1           | HEAT TRANSFER PROCESSES                                      | 206        |
| 13.2           | MODELLING APPROACH                                           | 207        |

|         |                                               |     |
|---------|-----------------------------------------------|-----|
| 13.3    | NUMERICAL METHODS                             | 209 |
| 13.4    | RESPONSE FUNCTION METHODS                     | 215 |
| 13.5    | TRANSFER FUNCTION METHODS                     | 223 |
| 13.6    | LUMPED PARAMETER METHODS                      | 228 |
| 13.7    | MULTIDIMENSIONAL EFFECTS                      | 229 |
| 13.8    | REQUIRED READING                              | 231 |
| 13.9    | SOURCES FOR FURTHER LEARNING                  | 233 |
| 13.10   | SIMULATION EXERCISES                          | 233 |
| 13.11   | CLOSING REMARKS                               | 237 |
| <hr/>   |                                               |     |
| CHAPTER | 14 ■ Heat transfer in transparent assemblies  | 239 |
| 14.1    | HEAT TRANSFER PROCESSES                       | 240 |
| 14.2    | MODELLING APPROACH                            | 241 |
| 14.3    | SOLAR TRANSMISSION AND ABSORPTION             | 243 |
| 14.4    | CONDUCTION AND STORAGE BY GLAZING             | 250 |
| 14.5    | HEAT TRANSFER BETWEEN GLAZINGS                | 251 |
| 14.6    | SPACERS AND FRAMES                            | 252 |
| 14.7    | REQUIRED READING                              | 253 |
| 14.8    | SOURCES FOR FURTHER LEARNING                  | 254 |
| 14.9    | SIMULATION EXERCISES                          | 254 |
| 14.10   | CLOSING REMARKS                               | 256 |
| <hr/>   |                                               |     |
| CHAPTER | 15 ■ Air infiltration and natural ventilation | 259 |
| 15.1    | AIRFLOWS THROUGH THE BUILDING ENVELOPE        | 260 |
| 15.2    | MODELLING OPTIONS                             | 261 |
| 15.3    | SINGLE-ZONE MODELS                            | 262 |
| 15.4    | NETWORK AIRFLOW MODELS                        | 267 |
| 15.5    | REQUIRED READING                              | 274 |
| 15.6    | SOURCES FOR FURTHER LEARNING                  | 275 |
| 15.7    | SIMULATION EXERCISES                          | 275 |
| 15.8    | CLOSING REMARKS                               | 278 |

**PART V HVAC**

|         |                                       |     |
|---------|---------------------------------------|-----|
| CHAPTER | 16 ■ HVAC distribution systems        | 281 |
| 16.1    | HVAC SYSTEM CONFIGURATION AND CONTROL | 282 |
| 16.2    | MODELLING APPROACHES                  | 286 |
| 16.3    | IDEALIZED METHODS                     | 288 |
| 16.4    | AIR-MIXING DUCT MODELS                | 289 |
| 16.5    | HEATING AND COOLING COIL MODELS       | 290 |
| 16.6    | VARIABLE-SPEED FAN MODELS             | 293 |
| 16.7    | HYDRONIC RADIATOR MODELS              | 294 |
| 16.8    | REQUIRED READING                      | 300 |
| 16.9    | SOURCES FOR FURTHER LEARNING          | 301 |
| 16.10   | SIMULATION EXERCISES                  | 301 |
| 16.11   | CLOSING REMARKS                       | 304 |

|         |                                            |     |
|---------|--------------------------------------------|-----|
| CHAPTER | 17 ■ Energy conversion and storage systems | 305 |
| 17.1    | MODELLING APPROACHES                       | 306 |
| 17.2    | COMBUSTION BOILER MODELS                   | 306 |
| 17.3    | HEAT PUMP MODELS                           | 310 |
| 17.4    | SOLAR THERMAL COLLECTOR MODELS             | 312 |
| 17.5    | THERMAL ENERGY STORAGE MODELS              | 314 |
| 17.6    | REQUIRED READING                           | 318 |
| 17.7    | SOURCES FOR FURTHER LEARNING               | 318 |
| 17.8    | SIMULATION EXERCISES                       | 319 |
| 17.9    | CLOSING REMARKS                            | 320 |

**PART VI Finale**

|         |                        |     |
|---------|------------------------|-----|
| CHAPTER | 18 ■ Culminating trial | 325 |
| 18.1    | OVERVIEW               | 326 |
| 18.2    | APPROACH               | 327 |
| 18.3    | OBJECTIVES OF ANALYSES | 327 |
| 18.4    | CASE STUDY BUILDING    | 328 |

|                |                                    |            |
|----------------|------------------------------------|------------|
| 18.5           | BUILDING ENVELOPE                  | 328        |
| 18.6           | HVAC                               | 329        |
| 18.7           | INTERNAL HEAT AND MOISTURE SOURCES | 332        |
| 18.8           | SIMULATION EXERCISES               | 333        |
| 18.9           | CLOSING REMARKS                    | 341        |
| <b>CHAPTER</b> | <b>19 ■ Next steps</b>             | <b>343</b> |
| <hr/>          |                                    |            |
| References     |                                    | 345        |
| Index          |                                    | 363        |