

CONTENTS

PREFACE	xiii
1 INTRODUCTION	1
1.1 Rehabilitation Engineering	1
1.2 US Legislation Influencing Rehabilitation Engineering	4
1.3 International Policy Influencing Rehabilitation Engineering	7
1.4 Assistive Technology	11
1.5 Rehabilitation Technology Suppliers	15
1.6 Engineering Acceptable Performance	15
1.7 Rehabilitation Engineering Design	16
1.8 Assistive Technology Design Criteria	18
1.9 Product Testing	23
1.10 Summary	24
Further Reading and References	27
2 FUNDAMENTALS OF REHABILITATION ENGINEERING DESIGN	30
2.1 Design Considerations	30
2.2 Total Quality Management in Rehabilitation Engineering	35
2.3 Steel as a Structural Material	42
2.4 Aluminum for Assistive Technology Design	46
2.5 Use of Composites for Assistive Technology Design	49
2.6 Design with Engineering Materials	50
2.7 Fabrication	53
2.8 Basic Electric Circuits	55
Further Reading and References	68
3 BIOMECHANICS OF MOBILITY AND MANIPULATION	69
3.1 Human Motion Analysis	69
3.2 Gait Analysis	90
3.3 Functional Neuromuscular Stimulation for Movement Restoration	109
3.4 Biomechanics of Wheelchair Propulsion	115
3.5 Biomechanics of Seating	132

3.6	Biomechanics of Manipulation	138
	Further Reading and References	144
4	UNIVERSAL DESIGN AND ACCESSIBILITY	155
4.1	Barrier-Free Design	155
4.2	Elemental Resource Model	156
4.3	Factors Affecting Barrier-Free Design	159
4.4	Interior Space Design	165
4.5	Design for People with Disabilities	166
4.6	Accessible Transportation	177
4.7	Access Legislation	182
	Further Reading and References	187
5	PERSONAL TRANSPORTATION	191
5.1	Introduction	191
5.2	Selecting a Vehicle	193
5.3	Lift Mechanisms	196
5.4	Wheelchair Securement Systems	199
5.5	Passenger Restraint Systems	202
5.6	Automobile Hand-Controls	210
5.7	Control of Secondary Functions	215
	Further Reading and References	217
6	WHEELCHAIR SAFETY, STANDARDS AND TESTING	219
6.1	Introduction	219
6.2	Standard Tests	219
6.3	Normative Values	220
6.4	Static Stability	220
6.5	A Geometric Approach to Static Stability	223
6.6	Stability with Road Crown and Inclination	224
6.7	Impact Strength Tests	228
6.8	Fatigue Strength Tests	235
6.9	Finite-Element Modeling Applied to Wheelchair Design/Testing	241
6.10	Test Dummies	243
6.11	Power Wheelchair Range Testing	244
6.12	Power Wheelchair Controller Performance	247
6.13	Designing for Safe Operation	249
	Further Reading and References	253
7	MANUAL WHEELCHAIR DESIGN	255
7.1	Introduction	255
7.2	Classes of Manual Wheelchairs	256
7.3	Frame Design	261

7.4	Materials	265
7.5	The Wheelchair and Rider	272
7.6	Wheels and Casters	279
7.7	Components	285
7.8	Human Factors Design Considerations	285
7.9	Future Directions	288
	Further Reading and References	289
8	POWER WHEELCHAIR DESIGN	291
8.1	Introduction	291
8.2	Classes of Power Wheelchairs	292
8.3	Motor Selection	292
8.4	Servoamplifiers	302
8.5	Microprocessor Control	307
8.6	Shared Control	315
8.7	Fault-Tolerant Control	321
8.8	Integrated Controllers	323
8.9	Electromagnetic Compatibility	325
8.10	Batteries	327
8.11	Gear Boxes	328
8.12	User Interfaces	329
	Further Reading and References	333
9	POSTURAL SUPPORT AND SEATING	337
9.1	Seating and Postural Support Systems	337
9.2	Distribution of Stresses in Soft Tissues	359
9.3	Seating Pressure Measurement	361
9.4	Control Interface Integration	365
9.5	Multi-Configuration Seating and Postural Support Systems	368
	Further Reading and References	375
10	PROSTHETICS AND ORTHOTICS	378
10.1	Introduction	378
10.2	Upper-Extremity Prostheses	386
10.3	Upper-Extremity Orthoses	394
10.4	Lower-Extremity Prostheses	397
10.5	Lower-Extremity Orthoses	407
10.6	Functional Neuromuscular Stimulation	412
10.7	Ambulation Aids	419
10.8	Aids to Daily Living	422
	Further Reading and References	423
11	RECREATIONAL DEVICES AND VEHICLES	428
11.1	Introduction	428

11.2 Racing Wheelchairs	429
11.3 Arm-Powered Bicycles and Tricycles	438
11.4 Off-Road Vehicles	443
11.5 Water Sports	445
11.6 Adaptive Ski Equipment	447
11.7 Recreational Vehicles	452
Further Reading and References	454
12 REHABILITATION ROBOTICS	456
12.1 Introduction	456
12.2 Components and Configurations of Robots	463
12.3 Robot Kinematics	468
12.4 Robot Motion	478
12.5 Robot Control	486
12.6 Robot Sensors	494
12.7 Human Interfaces to Robotic Systems	502
Further Reading and References	506
INDEX	510