

CONTENTS

Preface	xiii
Preface to Second Edition	xvii
1 Heat Conduction Fundamentals	1
1-1 The Heat Flux, 2	
1-2 Thermal Conductivity, 4	
1-3 Differential Equation of Heat Conduction, 6	
1-4 Fourier's Law and the Heat Equation in Cylindrical and Spherical Coordinate Systems, 14	
1-5 General Boundary Conditions and Initial Condition for the Heat Equation, 16	
1-6 Nondimensional Analysis of the Heat Conduction Equation, 25	
1-7 Heat Conduction Equation for Anisotropic Medium, 27	
1-8 Lumped and Partially Lumped Formulation, 29	
References, 36	
Problems, 37	
2 Orthogonal Functions, Boundary Value Problems, and the Fourier Series	40
2-1 Orthogonal Functions, 40	
2-2 Boundary Value Problems, 41	
2-3 The Fourier Series, 60	
2-4 Computation of Eigenvalues, 63	
2-5 Fourier Integrals, 67	

References, 73	
Problems, 73	
3 Separation of Variables in the Rectangular Coordinate System	75
3-1 Basic Concepts in the Separation of Variables Method, 75	
3-2 Generalization to Multidimensional Problems, 85	
3-3 Solution of Multidimensional Homogenous Problems, 86	
3-4 Multidimensional Nonhomogeneous Problems: Method of Superposition, 98	
3-5 Product Solution, 112	
3-6 Capstone Problem, 116	
References, 123	
Problems, 124	
4 Separation of Variables in the Cylindrical Coordinate System	128
4-1 Separation of Heat Conduction Equation in the Cylindrical Coordinate System, 128	
4-2 Solution of Steady-State Problems, 131	
4-3 Solution of Transient Problems, 151	
4-4 Capstone Problem, 167	
References, 179	
Problems, 179	
5 Separation of Variables in the Spherical Coordinate System	183
5-1 Separation of Heat Conduction Equation in the Spherical Coordinate System, 183	
5-2 Solution of Steady-State Problems, 188	
5-3 Solution of Transient Problems, 194	
5-4 Capstone Problem, 221	
References, 233	
Problems, 233	
Notes, 235	
6 Solution of the Heat Equation for Semi-Infinite and Infinite Domains	236
6-1 One-Dimensional Homogeneous Problems in a Semi-Infinite Medium for the Cartesian Coordinate System, 236	
6-2 Multidimensional Homogeneous Problems in a Semi-Infinite Medium for the Cartesian Coordinate System, 247	
6-3 One-Dimensional Homogeneous Problems in An Infinite Medium for the Cartesian Coordinate System, 255	
6-4 One-Dimensional homogeneous Problems in a Semi-Infinite Medium for the Cylindrical Coordinate System, 260	

6-5	Two-Dimensional Homogeneous Problems in a Semi-Infinite Medium for the Cylindrical Coordinate System, 265	
6-6	One-Dimensional Homogeneous Problems in a Semi-Infinite Medium for the Spherical Coordinate System, 268	
References,	271	
Problems,	271	
7	Use of Duhamel's Theorem	273
7-1	Development of Duhamel's Theorem for Continuous Time-Dependent Boundary Conditions, 273	
7-2	Treatment of Discontinuities, 276	
7-3	General Statement of Duhamel's Theorem, 278	
7-4	Applications of Duhamel's Theorem, 281	
7-5	Applications of Duhamel's Theorem for Internal Energy Generation, 294	
References,	296	
Problems,	297	
8	Use of Green's Function for Solution of Heat Conduction Problems	300
8-1	Green's Function Approach for Solving Nonhomogeneous Transient Heat Conduction, 300	
8-2	Determination of Green's Functions, 306	
8-3	Representation of Point, Line, and Surface Heat Sources with Delta Functions, 312	
8-4	Applications of Green's Function in the Rectangular Coordinate System, 317	
8-5	Applications of Green's Function in the Cylindrical Coordinate System, 329	
8-6	Applications of Green's Function in the Spherical Coordinate System, 335	
8-7	Products of Green's Functions, 344	
References,	349	
Problems,	349	
9	Use of the Laplace Transform	355
9-1	Definition of Laplace Transformation, 356	
9-2	Properties of Laplace Transform, 357	
9-3	Inversion of Laplace Transform Using the Inversion Tables, 365	
9-4	Application of the Laplace Transform in the Solution of Time-Dependent Heat Conduction Problems, 372	
9-5	Approximations for Small Times, 382	
References,	390	
Problems,	390	

10 One-Dimensional Composite Medium	393
10-1 Mathematical Formulation of One-Dimensional Transient Heat Conduction in a Composite Medium, 393	
10-2 Transformation of Nonhomogeneous Boundary Conditions into Homogeneous Ones, 395	
10-3 Orthogonal Expansion Technique for Solving M -Layer Homogeneous Problems, 401	
10-4 Determination of Eigenfunctions and Eigenvalues, 407	
10-5 Applications of Orthogonal Expansion Technique, 410	
10-6 Green's Function Approach for Solving Nonhomogeneous Problems, 418	
10-7 Use of Laplace Transform for Solving Semi-Infinite and Infinite Medium Problems, 424	
References, 429	
Problems, 430	
11 Moving Heat Source Problems	433
11-1 Mathematical Modeling of Moving Heat Source Problems, 434	
11-2 One-Dimensional Quasi-Stationary Plane Heat Source Problem, 439	
11-3 Two-Dimensional Quasi-Stationary Line Heat Source Problem, 443	
11-4 Two-Dimensional Quasi-Stationary Ring Heat Source Problem, 445	
References, 449	
Problems, 450	
12 Phase-Change Problems	452
12-1 Mathematical Formulation of Phase-Change Problems, 454	
12-2 Exact Solution of Phase-Change Problems, 461	
12-3 Integral Method of Solution of Phase-Change Problems, 474	
12-4 Variable Time Step Method for Solving Phase-Change Problems: A Numerical Solution, 478	
12-5 Enthalpy Method for Solution of Phase-Change Problems: A Numerical Solution, 484	
References, 490	
Problems, 493	
Note, 495	
13 Approximate Analytic Methods	496
13-1 Integral Method: Basic Concepts, 496	
13-2 Integral Method: Application to Linear Transient Heat Conduction in a Semi-Infinite Medium, 498	
13-3 Integral Method: Application to Nonlinear Transient Heat Conduction, 508	

13-4	Integral Method: Application to a Finite Region,	512
13-5	Approximate Analytic Methods of Residuals,	516
13-6	The Galerkin Method,	521
13-7	Partial Integration,	533
13-8	Application to Transient Problems,	538
	References,	542
	Problems,	544
14	Integral Transform Technique	547
14-1	Use of Integral Transform in the Solution of Heat Conduction Problems,	548
14-2	Applications in the Rectangular Coordinate System,	556
14-3	Applications in the Cylindrical Coordinate System,	572
14-4	Applications in the Spherical Coordinate System,	589
14-5	Applications in the Solution of Steady-state problems,	599
	References,	602
	Problems,	603
	Notes,	607
15	Heat Conduction in Anisotropic Solids	614
15-1	Heat Flux for Anisotropic Solids,	615
15-2	Heat Conduction Equation for Anisotropic Solids,	617
15-3	Boundary Conditions,	618
15-4	Thermal Resistivity Coefficients,	620
15-5	Determination of Principal Conductivities and Principal Axes,	621
15-6	Conductivity Matrix for Crystal Systems,	623
15-7	Transformation of Heat Conduction Equation for Orthotropic Medium,	624
15-8	Some Special Cases,	625
15-9	Heat Conduction in an Orthotropic Medium,	628
15-10	Multidimensional Heat Conduction in an Anisotropic Medium,	637
	References,	645
	Problems,	647
	Notes,	649
16	Introduction to Microscale Heat Conduction	651
16-1	Microstructure and Relevant Length Scales,	652
16-2	Physics of Energy Carriers,	656
16-3	Energy Storage and Transport,	661
16-4	Limitations of Fourier's Law and the First Regime of Microscale Heat Transfer,	667
16-5	Solutions and Approximations for the First Regime of Microscale Heat Transfer,	672

16-6 Second and Third Regimes of Microscale Heat Transfer, 676	
16-7 Summary Remarks, 676	
References, 676	
APPENDIXES	679
Appendix I Physical Properties	681
Table I-1 Physical Properties of Metals, 681	
Table I-2 Physical Properties of Nonmetals, 683	
Table I-3 Physical Properties of Insulating Materials, 684	
Appendix II Roots of Transcendental Equations	685
Appendix III Error Functions	688
Appendix IV Bessel Functions	691
Table IV-1 Numerical Values of Bessel Functions, 696	
Table IV-2 First 10 Roots of $J_n(z) = 0, n = 0, 1, 2, 3, 4, 5$, 704	
Table IV-3 First Six Roots of $\beta J_1(\beta) - c J_0(\beta) = 0$, 705	
Table IV-4 First Five Roots of $J_0(\beta)Y_0(c\beta) - Y_0(\beta)J_0(c\beta) = 0$, 706	
Appendix V Numerical Values of Legendre Polynomials of the First Kind	707
Appendix VI Properties of Delta Functions	710
Index	713