
Contents

Chapter 1 Introduction 1

- 1.1 Problem Statement and Basic Definitions 2
- 1.2 Illustrative Examples 4
- 1.3 Guidelines for Model Construction 26
- Exercises 30
- Notes and References 34

Part 1 Convex Analysis 37**Chapter 2 Convex Sets 39**

- 2.1 Convex Hulls 40
- 2.2 Closure and Interior of a Set 45
- 2.3 Weierstrass's Theorem 48
- 2.4 Separation and Support of Sets 50
- 2.5 Convex Cones and Polarity 62
- 2.6 Polyhedral Sets, Extreme Points, and Extreme Directions 64
- 2.7 Linear Programming and the Simplex Method 75
- Exercises 86
- Notes and References 93

Chapter 3 Convex Functions and Generalizations 97

- 3.1 Definitions and Basic Properties 98
- 3.2 Subgradients of Convex Functions 103
- 3.3 Differentiable Convex Functions 109
- 3.4 Minima and Maxima of Convex Functions 123
- 3.5 Generalizations of Convex Functions 134
- Exercises 147
- Notes and References 159

Part 2 Optimality Conditions and Duality 163**Chapter 4 The Fritz John and Karush–Kuhn–Tucker Optimality Conditions 165**

- 4.1 Unconstrained Problems 166
- 4.2 Problems Having Inequality Constraints 174
- 4.3 Problems Having Inequality and Equality Constraints 197
- 4.4 Second-Order Necessary and Sufficient Optimality Conditions for Constrained Problems 211
- Exercises 220
- Notes and References 235

Chapter 5 Constraint Qualifications 237

- 5.1 Cone of Tangents 237
- 5.2 Other Constraint Qualifications 241
- 5.3 Problems Having Inequality and Equality Constraints 245
- Exercises 250
- Notes and References 256

Chapter 6 Lagrangian Duality and Saddle Point**Optimality Conditions 257**

- 6.1 Lagrangian Dual Problem 258
- 6.2 Duality Theorems and Saddle Point Optimality Conditions 263
- 6.3 Properties of the Dual Function 276
- 6.4 Formulating and Solving the Dual Problem 286
- 6.5 Getting the Primal Solution 293
- 6.6 Linear and Quadratic Programs 298
- Exercises 300
- Notes and References 313

Part 3 Algorithms and Their Convergence 315**Chapter 7 The Concept of an Algorithm 317**

- 7.1 Algorithms and Algorithmic Maps 317
- 7.2 Closed Maps and Convergence 319
- 7.3 Composition of Mappings 324
- 7.4 Comparison Among Algorithms 329
- Exercises 332
- Notes and References 340

Chapter 8 Unconstrained Optimization 343

- 8.1 Line Search Without Using Derivatives 344
- 8.2 Line Search Using Derivatives 356
- 8.3 Some Practical Line Search Methods 360
- 8.4 Closedness of the Line Search Algorithmic Map 363
- 8.5 Multidimensional Search Without Using Derivatives 365
- 8.6 Multidimensional Search Using Derivatives 384
- 8.7 Modification of Newton's Method: Levenberg–Marquardt and Trust Region Methods 398
- 8.8 Methods Using Conjugate Directions: Quasi-Newton and Conjugate Gradient Methods 402
- 8.9 Subgradient Optimization Methods 435
- Exercises 444
- Notes and References 462

Chapter 9 Penalty and Barrier Functions 469

- 9.1 Concept of Penalty Functions 470
- 9.2 Exterior Penalty Function Methods 475
- 9.3 Exact Absolute Value and Augmented Lagrangian Penalty Methods 485
- 9.4 Barrier Function Methods 501
- 9.5 Polynomial-Time Interior Point Algorithms for Linear Programming Based on a Barrier Function 509
- Exercises 520
- Notes and References 533

Chapter 10 Methods of Feasible Directions 537

- 10.1 Method of Zoutendijk 538
- 10.2 Convergence Analysis of the Method of Zoutendijk 557
- 10.3 Successive Linear Programming Approach 568
- 10.4 Successive Quadratic Programming or Projected Lagrangian Approach 576
- 10.5 Gradient Projection Method of Rosen 589

10.6	Reduced Gradient Method of Wolfe and Generalized Reduced Gradient Method	602
10.7	Convex–Simplex Method of Zangwill	613
10.8	Effective First- and Second-Order Variants of the Reduced Gradient Method	620
	Exercises	625
	Notes and References	649
Chapter 11	Linear Complementary Problem, and Quadratic, Separable, Fractional, and Geometric Programming	655
11.1	Linear Complementary Problem	656
11.2	Convex and Nonconvex Quadratic Programming: Global Optimization Approaches	667
11.3	Separable Programming	684
11.4	Linear Fractional Programming	703
11.5	Geometric Programming	712
	Exercises	722
	Notes and References	745
Appendix A	Mathematical Review	751
Appendix B	Summary of Convexity, Optimality Conditions, and Duality	765
Bibliography	779	
Index	843	