

PART ONE ENGINEERING PRINCIPLES

Chapter 1

Keystones of Design: Materials Selection and Geometry Determination

- 1.1 Some Background Philosophy
- 1.2 The Product Design Team
- 1.3 Function and Form; Aesthetics and Ergonomics
- 1.4 Concepts and Definitions of Mechanical Design
- 1.5 Design Safety Factor
- 1.6 Stages of Design
- 1.7 Steps in the Design Process
- 1.8 Fail Safe and Safe Life Design Concepts
- 1.9 The Virtues of Simplicity
- 1.10 Lessons Learned Strategy
- 1.11 Machine Elements, Subassemblies, and the Whole Machine
- 1.12 The Role of Codes and Standards in the Design Process
- 1.13 Ethics in Engineering Design
- 1.14 Units

Chapter 2

The Failure Prevention Perspective

- 2.1 Role of Failure Prevention Analysis in Mechanical Design
- 2.2 Failure Criteria
- 2.3 Modes of Mechanical Failure
- 2.4 Elastic Deformation, Yielding, and Ductile Rupture
- 2.5 Brittle Fracture and Crack Propagation: Linear Elastic Fracture Mechanics

2.6	Fluctuating Loads, Cumulative Damage, and Fatigue Life	43
1	Fluctuating Loads and Stresses	44
1	Fatigue Strength and Fatigue Limit	46
2	Estimating S-N Curves	48
2	Stress-Life (S-N) Approach to Fatigue	50
5	Factors That May Affect S-N Curves	50
5	Nonzero-Mean Stress	59
6	Cumulative Damage Concepts and Cycle Counting	66
7	Multiaxial Cyclic Stresses	72
7	Fracture Mechanics (F-M) Approach to Fatigue	73
9	<i>Crack Initiation Phase</i>	73
10	<i>Crack Propagation and Final Fracture Phases</i>	76
12	<i>Design Issues in Fatigue Life Prediction</i>	81
2.7	Elastic Instability and Buckling	81
13	Buckling of a Simple Pin-Jointed Mechanism	82
13	Buckling of a Pinned-End Column	83
14	Columns With Other End Constraints	85
14	Inelastic Behavior and Initially Crooked Columns	86
22	Column Failure Prediction and Design Considerations	87
22	Buckling of Elements Other Than Columns	90
22	2.8 Shock and Impact	92
23	Stress Wave Propagation Under Impact Loading Conditions	93
28	Energy Method of Approximating Stress and Deflection Under Impact Loading Conditions	93
34		

2.9 Creep and Stress Rupture	98	<i>Torsional Shear; Noncircular Cross Section</i>	181
Predictions of Long-Term Creep Behavior	100	<i>Torsional Shear; Shear Center in Bending</i>	185
Creep under Uniaxial State of Stress	101	<i>Surface Contact Stress</i>	188
Cumulative Creep Prediction	104	Deflection; Common Types of Loading	188
2.10 Wear and Corrosion	105	Stored Strain Energy	189
Wear	106	Castigliano's Theorem	191
Corrosion	111	4.5 Multiaxial States of Stress and Strain	194
2.11 Fretting, Fretting-Fatigue, and Fretting Wear	113	Principal Stresses	195
Fretting Fatigue	114	Stress Cubic Equation	195
Fretting Wear	116	<i>Mohr's Circle Analogy for Stress</i>	198
Minimizing or Preventing Fretting Damage	116	<i>Strain Cubic Equation and Principal Strains</i>	201
2.12 Failure Data and the Design Task	117	<i>Mohr's Circle Analogy for Strain</i>	202
2.13 Failure Assessment and Retrospective Design	117	Elastic Stress-Strain Relationships (Hooke's Law)	202
		4.6 Combined Stress Theories of Failure	204
		Maximum Normal Stress Theory (Rankine's Theory)	204
		Maximum Shearing Stress Theory (Tresca-Guest Theory)	205
		Distortion Energy Theory (Huber-Von Mises-Hencky Theory)	205
		Failure Theory Selection	207
		4.7 Multiaxial States of Cyclic Stress and Multiaxial Fatigue Failure Theories	208
		4.8 Stress Concentration	212
		Stress Concentration Effects	212
		Multiple Notches	214
		Fatigue Stress Concentration Factors and Notch Sensitivity Index	220
		4.9 Bending of Initially Curved Beams	227
		4.10 Stresses Caused by Curved Surfaces in Contact	232
		4.11 Load Sharing in Redundant Assemblies and Structures	237
		Machine Elements as Springs	238
		4.12 Preloading Concepts	243
		4.13 Residual Stresses	247
		Estimating Residual Stresses	248
		4.14 Environmental Effects	254
Chapter 3			
Materials Selection			
3.1 Steps in Materials Selection	130		
3.2 Analyzing Requirements of the Application	130		
3.3 Assembling Lists of Responsive Materials	141		
3.4 Matching Responsive Materials to Application Requirements; Rank Ordered Data Table Method	142		
3.5 Matching Responsive Materials to Application Requirements; Ashby Chart Method	151		
Chapter 4			
Response of Machine Elements to Loads and Environments; Stress, Strain, and Energy Parameters			
4.1 Loads and Geometry			
4.2 Equilibrium Concepts and Free Body Diagrams			
4.3 Force Analysis			
4.4 Stress and Deflection Analysis; Common Stress Patterns			
States of Stress; Common Types of Loading	163		
<i>Direct Axial Stress</i>	164		
<i>Bending; Load, Shear, and Moment Diagrams</i>	164		
<i>Bending; Straight Beam with Pure Moment</i>	169		
<i>Bending; Straight Beam with Transverse Forces</i>	172		
<i>Direct Shear and Transverse Shear Stress</i>	172		
<i>Torsional Shear; Circular Cross Section</i>	179		
Chapter 5			
The Role of Safety Factor; Reliability Concepts			
5.1 Purpose of Safety Factors in Design Calculations			267
5.2 Selection and Use of a Design Safety Factor			267

5.3 Determination of Existing Safety Factor in a Completed Design: A Conceptual Contrast	270	Strain Matching Guideline	291
5.4 Reliability: Concepts, Definitions, and Data	271	Load Spreading Guideline	291
System Reliability, Reliability Goals, and Reliability Allocation	276	6.3 Critical Sections and Critical Points	293
Reliability Data	279	6.4 Transforming Combined Stress Failure Theories into Combined Stress Design Equations	295
5.5 The Dilemma of Reliability Specification Versus Design Safety Factor	279	6.5 Simplifying Assumptions: The Need and the Risk	296
		6.6 Iteration Revisited	297
		6.7 Fits, Tolerances, and Finishes	303
Chapter 6			
Geometry Determination			
6.1 The Contrast in Objectives Between Analysis and Design	283	Chapter 7	
6.2 Basic Principles and Guidelines for Creating Shape and Size	283	Design-Stage Integration of Manufacturing and Maintenance Requirements	
Direct Load Path Guideline	284	7.1 Concurrent Engineering	313
Tailored-Shape Guideline	285	7.2 Design for Function, Performance, and Reliability	314
Triangle-Tetrahedron Guideline	286	7.3 Selection of the Manufacturing Process	314
Buckling Avoidance Guideline	287	7.4 Design for Manufacturing (DFM)	317
Hollow Cylinder and I-Beam Guideline	288	7.5 Design for Assembly (DFA)	317
Conforming Surface Guideline	288	7.6 Design for Critical Point Accessibility, Inspectability, Disassembly, Maintenance, and Recycling	319
Lazy-Material Removal Guideline	289		
Merging Shape Guideline	290		

PART TWO DESIGN APPLICATIONS

Chapter 8

Power Transmission Shafts; Couplings, Keys, and Splines

8.1 Uses and Characteristics of Shafting	321
8.2 Potential Failure Modes	321
8.3 Shaft Materials	323
8.4 Design Equations—Strength Based	324
8.5 Design Equations—Deflection Based	325
8.6 Shaft Vibration and Critical Speed	331
8.7 Summary of Suggested Shaft Design Procedure; General Guidelines for Shaft Design	338
8.8 Couplings, Keys, and Splines	340
Rigid Couplings	341
Flexible Couplings	343
Keys, Splines, and Tapered Fits	345

Chapter 9

Pressurized Cylinders; Interference Fits

9.1 Uses and Characteristics of Pressurized Cylinders	362
9.2 Interference Fit Applications	362
9.3 Potential Failure Modes	363
9.4 Materials for Pressure Vessels	363
9.5 Principles from Elasticity Theory	364
9.6 Thin-Walled Cylinders	365
9.7 Thick-Walled Cylinders	366
9.8 Interference Fits: Pressure and Stress	372
9.9 Design for Proper Interference	376

Chapter 10

Plain Bearings and Lubrication

10.1 Types of Bearings	383
10.2 Uses and Characteristics of Plain Bearings	383

10.3 Potential Failure Modes	384	13.4 Threaded Fasteners	465
10.4 Plain Bearing Materials	385	Screw Thread Standards and Terminology	466
10.5 Lubrication Concepts	385	Threaded Fastener Materials	469
10.6 Boundary Lubricated Bearing Design	386	Critical Points and Thread Stresses	471
10.7 Hydrodynamic Bearing Design	389	Preloading Effects; Joint Stiffness and Gasketed Joints	473
Lubricant Properties	390	Tightening Torque; Fastener Loosening	482
Loading, Friction, and Lubricant Flow Relationships	391	Multiply Bolted Joints; Symmetric and Eccentric Loading	486
Thermal Equilibrium and Oil Film Temperature Rise	396		
Design Criteria and Assumptions	399		
Suggested Design Procedure	400		
10.8 Hydrostatic Bearing Design	405	13.5 Rivets	491
		Rivet Materials	491
		Critical Points and Stress Analysis	492
		13.6 Welds	494
		Base Metals, Filler Materials, and Weldability	497
		Butt Welds	498
		Fillet Welds	500
		13.7 Adhesive Bonding	506
		Joint Design	506
		Structural Adhesive Materials	508
Chapter 11		Chapter 14	
Rolling Element Bearings		Springs	
11.1 Uses and Characteristics of Rolling Element Bearings	409	14.1 Uses and Characteristics of Springs	515
11.2 Types of Rolling Element Bearings	409	14.2 Types of Springs	515
11.3 Potential Failure Modes	410	14.3 Potential Failure Modes	517
11.4 Bearing Materials	413	14.4 Spring Materials	518
11.5 Bearing Selection	413	14.5 Axially Loaded Helical Coil Springs; Stress, Deflection, and Spring Rate	521
Basic Load Ratings	415	Deflection and Spring Rate	525
Reliability Specifications	415	Buckling and Surging	527
Suggested Selection Procedure for Steady Loads	416	14.6 Summary of Suggested Helical Coil Spring Design Procedure, and General Guidelines for Spring Design	529
Suggested Selection Procedure for Spectrum Loading	427	14.7 Beam Springs (Leaf Springs)	535
Lubrication	431	14.8 Summary of Suggested Leaf Spring Design Procedure	540
11.6 Preloading and Bearing Stiffness	432	14.9 Torsion Bars and Other Torsion Springs	544
11.7 Bearing Mounting and Enclosure	436	14.10 Belleville (Coned Disk) Springs	547
		14.11 Energy Storage in Springs	548
Chapter 12		Chapter 15	
Power Screw Assemblies		Gears and Systems of Gears	
12.1 Uses and Characteristics of Power Screws	440	15.1 Uses and Characteristics of Gears	557
12.2 Potential Failure Modes	443	15.2 Types of Gears; Factors in Selection	558
12.3 Materials	444	15.3 Gear Trains; Reduction Ratios	563
12.4 Power Screw Torque and Efficiency	444	15.4 Potential Failure Modes	567
12.5 Suggested Power Screw Design Procedure	450	15.5 Gear Materials	568
12.6 Critical Points and Thread Stresses	451	15.6 Spur Gears; Tooth Profile and Mesh Geometry	570
Chapter 13			
Machine Joints and Fastening Methods			
13.1 Uses and Characteristics of Joints in Machine Assemblies	462		
13.2 Selection of Joint Type and Fastening Method	462		
13.3 Potential Failure Modes	462		

Involute Profiles and Conjugate Action	570	16.3	Potential Failure Modes	661
Gearing Nomenclature; Tooth Shape and Size	572	16.4	Brake and Clutch Materials	661
Gear Tooth Systems	574	16.5	Basic Concepts for Design of Brakes and Clutches	663
Mesh Interactions	576	16.6	Rim (Drum) Brakes With Short Shoes	665
15.7 Gear Manufacturing; Methods, Quality, and Cost	579	16.7	Rim (Drum) Brakes With Long Shoes	675
Gear Cutting	580	16.8	Band Brakes	680
Gear Finishing	581	16.9	Disk Brakes and Clutches	685
Cutter Path Simulation, Mesh Deflection, and Profile Modification	582		Uniform Wear Assumption	686
Accuracy Requirements, Measurement Factors, and Manufacturing Cost Trends	584		Uniform Pressure Assumption	687
15.8 Spur Gears; Force Analysis	586	16.10 Cone Clutches and Brakes		690
15.9 Spur Gears; Stress Analysis and Design	587	Chapter 17		
Tooth Bending: Simplified Approach	588	Belts, Chains, Wire Rope, and Flexible Shafts		697
Tooth Bending: Synopsis of AGMA Refined Approach	592	17.1	Uses and Characteristics of Flexible Power Transmission Elements	697
Surface Durability: Hertz Contact Stresses and Surface Fatigue Wear	599	17.2	Belt Drives; Potential Failure Modes	701
Surface Durability: Synopsis of AGMA Refined Approach	601	17.3	Belts; Materials	703
15.10 Lubrication and Heat Dissipation	605	17.4	Belt Drives; Flat Belts	703
15.11 Spur Gears; Summary of Suggested Design Procedure	607	17.5	Belt Drives; V-Belts	707
15.12 Helical Gears; Nomenclature, Tooth Geometry, and Mesh Interaction	608	17.6	Belt Drives; Synchronous Belts	718
15.13 Helical Gears; Force Analysis	613	17.7	Chain Drives; Potential Failure Modes	719
15.14 Helical Gears; Stress Analysis and Design	614	17.8	Chain Drives; Materials	720
15.15 Helical Gears; Summary of Suggested Design Procedure	615	17.9	Chain Drives; Precision Roller Chain	721
15.16 Bevel Gears; Nomenclature, Tooth Geometry, and Mesh Interaction	621	17.10	Roller Chain Drives; Suggested Selection Procedure	723
15.17 Bevel Gears; Force Analysis	624	17.11	Chain Drives; Inverted Tooth Chain	728
15.18 Bevel Gears; Stress Analysis and Design	625	17.12	Wire Rope; Potential Failure Modes	728
15.19 Bevel Gears; Summary of Suggested Design Procedure	627	17.13	Wire Rope; Materials	731
15.20 Worm Gears and Worms; Nomenclature, Tooth Geometry, and Mesh Interaction	634	17.14	Wire Rope; Stresses and Strains	731
15.21 Worm Gears and Worms; Force Analysis and Efficiency	638	17.15	Wire Rope; Suggested Selection Procedure	734
15.22 Worm Gears and Worms; Stress Analysis and Design	640	17.16	Flexible Shafts	739
15.23 Worm Gears and Worms; Suggested Design Procedure	642	Chapter 18		
		Flywheels and High-Speed Rotors		746
		18.1	Uses and Characteristics of Flywheels	746
		18.2	Fluctuating Duty Cycles, Energy Management, and Flywheel Inertia	747
		18.3	Types of Flywheels	752
		18.4	Potential Failure Modes	753
		18.5	Flywheel Materials	753
		18.6	Spoke- and Rim-Flywheels	753
			Stresses in a Rotating Free Ring	754
			Bending Stresses in Flywheel Rim	755
			Spoke-Axial Tensile Stresses	756
Chapter 16		18.7	Disk Flywheels of Constant Thickness	757
Brakes and Clutches		18.8	Disk Flywheels of Uniform Strength	761
16.1 Uses and Characteristics of Brakes and Clutches	658			
16.2 Types of Brakes and Clutches	659			

18.9 Uniform-Strength Disk Flywheel with a Rim	763	19.5 Summary of Suggested Crankshaft Design Procedure	772
18.10 Flywheel-to-Shaft Connections	766		
Chapter 19		Chapter 20	
Cranks and Crankshafts	770	Completing the Machine	788
19.1 Uses and Characteristics of Crankshafts	770	20.1 Integrating the Components; Bases, Frames, and Housings	788
19.2 Types of Crankshafts	771	20.2 Safety Issues; Guards, Devices, and Warnings	795
19.3 Potential Failure Modes	772	20.3 Design Reviews; Releasing the Final Design	800
19.4 Crankshaft Materials	772		

APPENDIX

NSPE Code of Ethics for Engineers	804	Table A-4	
Table A-1		Section Properties of Selected S (Standard I) Shapes	
Coefficients of Friction	809		815
Table A-2		Table A-5	
Mass Moments of Inertia J and Radii of Gyration k for Selected Homogeneous Solid Bodies Rotating About Selected Axes, as Sketched	812	Section Properties of Selected C (Channel) Shapes	
Table A-3			816
Section Properties of Selected W (Wide Flange) Shapes	813	Table A-6	
		Section Properties of Selected Equal-Leg L (Angle) Shapes	
			817
INDEX			819