

Contents

About the Editors	xiii
Contributors	xv
Series Editor's Preface	xvii
Preface	xix
Acknowledgements	xxi
Part I OVERVIEW	
1 Introduction	3
1.1 Durability in Vehicle Engineering	4
1.2 Reliability, Variation and Robustness	6
1.3 Load Description for Trucks	7
1.4 Why Is Load Analysis Important?	9
1.5 The Structure of the Book	10
2 Loads for Durability	15
2.1 Fatigue and Load Analysis	15
2.1.1 <i>Constant Amplitude Load</i>	15
2.1.2 <i>Block Load</i>	16
2.1.3 <i>Variable Amplitude Loading and Rainflow Cycles</i>	16
2.1.4 <i>Rainflow Matrix, Level Crossings and Load Spectrum</i>	18
2.1.5 <i>Other Kinds of Fatigue</i>	20
2.2 Loads in View of Fatigue Design	23
2.2.1 <i>Fatigue Life: Cumulative Damage</i>	23
2.2.2 <i>Fatigue Limit: Maximum Load</i>	23
2.2.3 <i>Sudden Failures: Maximum Load</i>	24
2.2.4 <i>Safety Critical Components</i>	24
2.2.5 <i>Design Concepts in Aerospace Applications</i>	24

2.3	Loads in View of System Response	25
2.4	Loads in View of Variability	27
2.4.1	<i>Different Types of Variability</i>	27
2.4.2	<i>Loads in Different Environments</i>	28
2.5	Summary	29

Part II METHODS FOR LOAD ANALYSIS

3	Basics of Load Analysis	33
3.1	Amplitude-based Methods	35
3.1.1	<i>From Outer Loads to Local Loads</i>	36
3.1.2	<i>Pre-processing of Load Signals</i>	37
3.1.3	<i>Rainflow Cycle Counting</i>	40
3.1.4	<i>Range-pair Counting</i>	49
3.1.5	<i>Markov Counting</i>	51
3.1.6	<i>Range Counting</i>	53
3.1.7	<i>Level Crossing Counting</i>	55
3.1.8	<i>Interval Crossing Counting</i>	56
3.1.9	<i>Irregularity Factor</i>	56
3.1.10	<i>Peak Value Counting</i>	56
3.1.11	<i>Examples Comparing Counting Methods</i>	56
3.1.12	<i>Pseudo Damage and Equivalent Loads</i>	60
3.1.13	<i>Methods for Rotating Components</i>	67
3.1.14	<i>Recommendations and Work-flow</i>	70
3.2	Frequency-based Methods	72
3.2.1	<i>The PSD Function and the Periodogram</i>	73
3.2.2	<i>Estimating the Spectrum Based on the Periodogram</i>	74
3.2.3	<i>Spectrogram or Waterfall Diagram</i>	79
3.2.4	<i>Frequency-based System Analysis</i>	79
3.2.5	<i>Extreme Response and Fatigue Damage Spectrum</i>	85
3.2.6	<i>Wavelet Analysis</i>	86
3.2.7	<i>Relation Between Amplitude and Frequency-based Methods</i>	87
3.2.8	<i>More Examples and Summary</i>	87
3.3	Multi-input Loads	91
3.3.1	<i>From Outer Loads to Local Loads</i>	92
3.3.2	<i>The RP Method</i>	94
3.3.3	<i>Plotting Pseudo Damage and Examples</i>	95
3.3.4	<i>Equivalent Multi-input Loads</i>	99
3.3.5	<i>Phase Plots and Correlation Matrices for Multi-input Loads</i>	101
3.3.6	<i>Multi-input Time at Level Counting</i>	104
3.3.7	<i>Biaxiality Plots</i>	104
3.3.8	<i>The Wang-Brown Multi-axial Cycle Counting Method</i>	105
3.4	Summary	105

4	Load Editing and Generation of Time Signals	107
4.1	Introduction	107
4.1.1	<i>Essential Load Properties</i>	108
4.1.2	<i>Criteria for Equivalence</i>	108
4.2	Data Inspections and Corrections	110
4.2.1	<i>Examples and Inspection of Data</i>	110
4.2.2	<i>Detection and Correction</i>	112
4.3	Load Editing in the Time Domain	115
4.3.1	<i>Amplitude-based Editing of Time Signals</i>	115
4.3.2	<i>Frequency-based Editing of Time Signals</i>	126
4.3.3	<i>Amplitude-based Editing with Frequency Constraints</i>	136
4.3.4	<i>Editing of Time Signals: Summary</i>	138
4.4	Load Editing in the Rainflow Domain	139
4.4.1	<i>Re-scaling</i>	139
4.4.2	<i>Superposition</i>	141
4.4.3	<i>Extrapolation on Length or Test Duration</i>	143
4.4.4	<i>Extrapolation to Extreme Usage</i>	150
4.4.5	<i>Load Editing for 1D Counting Results</i>	154
4.4.6	<i>Summary, Hints and Recommendations</i>	154
4.5	Generation of Time Signals	156
4.5.1	<i>Amplitude- or Cycle-based Generation of Time Signals</i>	156
4.5.2	<i>Frequency-based Generation of Time Signals</i>	163
4.6	Summary	167
5	Response of Mechanical Systems	169
5.1	General Description of Mechanical Systems	169
5.1.1	<i>Multibody Models</i>	170
5.1.2	<i>Finite Element Models</i>	172
5.2	Multibody Simulation (MBS) for Durability Applications or: from System Loads to Component Loads	173
5.2.1	<i>An Illustrative Example</i>	173
5.2.2	<i>Some General Modelling Aspects</i>	175
5.2.3	<i>Flexible Bodies in Multibody Simulation</i>	178
5.2.4	<i>Simulating the Suspension Model</i>	181
5.3	Finite Element Models (FEM) for Durability Applications or: from Component Loads to Local Stress-strain Histories	186
5.3.1	<i>Linear Static Load Cases and Quasi-static Superposition</i>	188
5.3.2	<i>Linear Dynamic Problems and Modal Superposition</i>	189
5.3.3	<i>From the Displacement Solution to Local Stresses and Strains</i>	192
5.3.4	<i>Summary of Local Stress-strain History Calculation</i>	192
5.4	Invariant System Loads	193
5.4.1	<i>Digital Road and Tyre Models</i>	194
5.4.2	<i>Back Calculation of Invariant Substitute Loads</i>	196
5.4.3	<i>An Example</i>	199
5.5	Summary	200

6	Models for Random Loads	203
6.1	Introduction	203
6.2	Basics on Random Processes	206
6.2.1	<i>Some Average Properties of Random Processes*</i>	207
6.3	Statistical Approach to Estimate Load Severity	209
6.3.1	<i>The Extrapolation Method</i>	210
6.3.2	<i>Fitting Range-pairs Distribution</i>	210
6.3.3	<i>Semi-parametric Approach</i>	213
6.4	The Monte Carlo Method	215
6.5	Expected Damage for Gaussian Loads	218
6.5.1	<i>Stationary Gaussian Loads</i>	219
6.5.2	<i>Non-stationary Gaussian Loads with Constant Mean*</i>	223
6.6	Non-Gaussian Loads: the Role of Upcrossing Intensity	224
6.6.1	<i>Bendat's Narrow Band Approximation</i>	224
6.6.2	<i>Generalization of Bendat's Approach*</i>	225
6.6.3	<i>Laplace Processes</i>	228
6.7	The Coefficient of Variation for Damage	230
6.7.1	<i>Splitting the Measured Signal into Parts</i>	230
6.7.2	<i>Short Signals</i>	231
6.7.3	<i>Gaussian Loads</i>	232
6.7.4	<i>Compound Poisson Processes: Roads with Pot Holes</i>	233
6.8	Markov Loads	235
6.8.1	<i>Markov Chains*</i>	240
6.8.2	<i>Discrete Markov Loads – Definition</i>	242
6.8.3	<i>Markov Chains of Turning Points</i>	243
6.8.4	<i>Switching Markov Chain Loads</i>	244
6.8.5	<i>Approximation of Expected Damage for Gaussian Loads</i>	247
6.8.6	<i>Intensity of Interval Upcrossings for Markov Loads*</i>	248
6.9	Summary	249
7	Load Variation and Reliability	253
7.1	Modelling of Variability in Loads	253
7.1.1	<i>The Sources of Load Variability: Statistical Populations</i>	254
7.1.2	<i>Controlled or Uncontrolled Variation</i>	255
7.1.3	<i>Model Errors</i>	255
7.2	Reliability Assessment	256
7.2.1	<i>The Statistical Model Complexity</i>	256
7.2.2	<i>The Physical Model Complexity</i>	257
7.3	The Full Probabilistic Model	258
7.3.1	<i>Monte Carlo Simulations</i>	259
7.3.2	<i>Accuracy of the Full Probabilistic Approach</i>	263
7.4	The First-Moment Method	263
7.5	The Second-Moment Method	264
7.5.1	<i>The Gauss Approximation Formula</i>	264
7.6	The Fatigue Load-Strength Model	265
7.6.1	<i>The Fatigue Load and Strength Variables</i>	265

7.6.2	<i>Reliability Indices</i>	266
7.6.3	<i>The Equivalent Load and Strength Variables</i>	267
7.6.4	<i>Determining Uncertainty Measures</i>	271
7.6.5	<i>The Uncertainty due to the Estimated Damage Exponent</i>	273
7.6.6	<i>The Uncertainty Measure of Strength</i>	275
7.6.7	<i>The Uncertainty Measure of Load</i>	277
7.6.8	<i>Use of the Reliability Index</i>	279
7.6.9	<i>Including an Extra Safety Factor</i>	281
7.6.10	<i>Reducing Uncertainties</i>	283
7.7	Summary	284

Part III LOAD ANALYSIS IN VIEW OF THE VEHICLE DESIGN PROCESS

8	Evaluation of Customer Loads	287
8.1	Introduction	287
8.2	Survey Sampling	288
8.2.1	<i>Why Use Random Samples?</i>	288
8.2.2	<i>Simple Random Sample</i>	289
8.2.3	<i>Stratified Random Sample</i>	290
8.2.4	<i>Cluster Sample</i>	290
8.2.5	<i>Sampling with Unequal Probabilities</i>	291
8.2.6	<i>An Application</i>	292
8.2.7	<i>Simple Random Sampling in More Detail</i>	293
8.2.8	<i>Conclusion</i>	294
8.3	Load Measurement Uncertainty	295
8.3.1	<i>Precision in Load Severity</i>	295
8.3.2	<i>Pair-wise Analysis of Load Severity</i>	301
8.3.3	<i>Joint Analysis of Load Severity</i>	301
8.4	Random Sampling of Customers	303
8.4.1	<i>Customer Survey</i>	303
8.4.2	<i>Characterization of a Market</i>	304
8.4.3	<i>Simplified Model for a New Market</i>	306
8.4.4	<i>Comparison of Markets</i>	308
8.5	Customer Usage and Load Environment	308
8.5.1	<i>Model for Customer Usage</i>	310
8.5.2	<i>Load Environment Uncertainty</i>	312
8.6	Vehicle-Independent Load Descriptions	314
8.7	Discussion and Summary	318
9	Derivation of Design Loads	321
9.1	Introduction	321
9.1.1	<i>Scalar Load Representations</i>	321
9.1.2	<i>Other Load Representations</i>	322
9.1.3	<i>Statistical Aspects</i>	322

9.1.4	<i>Structure of the Chapter</i>	323
9.2	From Customer Usage Profiles to Design Targets	324
9.2.1	<i>Customer Load Distribution and Design Load</i>	324
9.2.2	<i>Strength Distribution and Strength Requirement</i>	324
9.2.3	<i>Defining the Reliability Target</i>	326
9.2.4	<i>Partial Safety Factor for Load-Strength Modelling</i>	328
9.2.5	<i>Safety Factors for Design Loads</i>	329
9.2.6	<i>Summary and Remarks</i>	331
9.3	Synthetic Load Models	333
9.4	Random Load Descriptions	335
9.4.1	<i>Models for External Load Environment</i>	335
9.4.2	<i>Load Descriptions in Design</i>	336
9.4.3	<i>Load Description for Testing</i>	336
9.5	Applying Reconstruction Methods	336
9.5.1	<i>Rainflow Reconstruction</i>	336
9.5.2	<i>1D and Markov Reconstruction</i>	339
9.5.3	<i>Spectral Reconstruction</i>	339
9.5.4	<i>Multi-input Loads</i>	340
9.6	Standardized Load Spectra	341
9.7	Proving Ground Loads	342
9.8	Optimized Combination of Test Track Events	342
9.8.1	<i>Optimizing with Respect to Damage per Channel</i>	343
9.8.2	<i>An Instructive Example</i>	346
9.8.3	<i>Extensions*</i>	351
9.8.4	<i>Hints and Practical Aspects</i>	353
9.9	Discussion and Summary	354
10	Verification of Systems and Components	357
10.1	Introduction	357
10.1.1	<i>Principles of Verification</i>	357
10.1.2	<i>Test for Continuous Improvements vs. Tests for Release</i>	358
10.1.3	<i>Specific Problems in Verification of Durability</i>	359
10.1.4	<i>Characterizing or Verification Tests</i>	360
10.1.5	<i>Verification on Different Levels</i>	361
10.1.6	<i>Physical vs. Numerical Evaluation</i>	363
10.1.7	<i>Summary</i>	363
10.2	Generating Loads for Testing	363
10.2.1	<i>Reliability Targets and Verification Loads</i>	364
10.2.2	<i>Generation of Time Signals based on Load Specifications</i>	364
10.2.3	<i>Acceleration of Tests</i>	365
10.3	Planning and Evaluation of Tests	365
10.3.1	<i>Choice of Strength Distribution and Variance</i>	366
10.3.2	<i>Parameter Estimation and Censored Data</i>	368
10.3.3	<i>Verification of Safety Factors</i>	371
10.3.4	<i>Statistical Tests for Quantiles</i>	373
10.4	Discussion and Summary	379

A	Fatigue Models and Life Prediction	383
A.1	Short, Long or Infinite Life	383
	A.1.1 <i>Low Cycle Fatigue</i>	383
	A.1.2 <i>High Cycle Fatigue</i>	383
	A.1.3 <i>Fatigue Limit</i>	384
A.2	Cumulative Fatigue	384
	A.2.1 <i>Arguments for the Palmgren-Miner Rule</i>	384
	A.2.2 <i>When is the Palmgren-Miner Rule Useful?</i>	386
B	Statistics and Probability	387
B.1	Further Reading	387
B.2	Some Common Distributions	387
	B.2.1 <i>Normal Distribution</i>	387
	B.2.2 <i>Log-Normal Distribution</i>	388
	B.2.3 <i>Weibull Distribution</i>	388
	B.2.4 <i>Rayleigh Distribution</i>	388
	B.2.5 <i>Exponential Distribution</i>	388
	B.2.6 <i>Generalized Pareto Distribution</i>	388
B.3	Extreme Value Distributions	389
	B.3.1 <i>Peak over Threshold Analysis</i>	389
C	Fourier Analysis	391
C.1	Fourier Transformation	391
C.2	Fourier Series	392
C.3	Sampling and the Nyquist-Shannon Theorem	393
C.4	DFT/FFT (Discrete Fourier Transformation)	394
D	Finite Element Analysis	395
D.1	Kinematics of Flexible Bodies	395
D.2	Equations of Equilibrium	396
D.3	Linear Elastic Material Behaviour	397
D.4	Some Basics on Discretization Methods	397
D.5	Dynamic Equations	399
E	Multibody System Simulation	401
E.1	Linear Models	401
E.2	Mathematical Description of Multibody Systems	402
	E.2.1 <i>The Equations of Motion</i>	403
	E.2.2 <i>Computational Issues</i>	404
F	Software for Load Analysis	407
F.1	Some Dedicated Software Packages	407
F.2	Some Software Packages for Fatigue Analysis	408
F.3	WAFO – a Toolbox for Matlab	408
	Bibliography	411
	Index	423