

Contents

Preface 15

About the Authors 27

CHAPTER 1 Introduction to Control Systems 29

- 1.1** Introduction 30
 - 1.2** Brief History of Automatic Control 33
 - 1.3** Examples of Control Systems 39
 - 1.4** Engineering Design 46
 - 1.5** Control System Design 47
 - 1.6** Mechatronic Systems 50
 - 1.7** Green Engineering 54
 - 1.8** The Future Evolution of Control Systems 55
 - 1.9** Design Examples 57
 - 1.10** Sequential Design Example: Disk Drive Read System 62
 - 1.11** Summary 63
- Skills Check 63 • Exercises 66 • Problems 68 • Advanced Problems 73 • Design Problems 75 • Terms and Concepts 78

CHAPTER 2 Mathematical Models of Systems 79

- 2.1** Introduction 80
 - 2.2** Differential Equations of Physical Systems 80
 - 2.3** Linear Approximations of Physical Systems 85
 - 2.4** The Laplace Transform 88
 - 2.5** The Transfer Function of Linear Systems 95
 - 2.6** Block Diagram Models 107
 - 2.7** Signal-Flow Graph Models 112
 - 2.8** Design Examples 119
 - 2.9** The Simulation of Systems Using Control Design Software 136
 - 2.10** Sequential Design Example: Disk Drive Read System 150
 - 2.11** Summary 153
- Skills Check 154 • Exercises 158 • Problems 164 • Advanced Problems 176 • Design Problems 178 • Computer Problems 180 • Terms and Concepts 182

CHAPTER 3 State Variable Models 184

- 3.1** Introduction 185
- 3.2** The State Variables of a Dynamic System 185
- 3.3** The State Differential Equation 188

3.4	Signal-Flow Graph and Block Diagram Models	194
3.5	Alternative Signal-Flow Graph and Block Diagram Models	205
3.6	The Transfer Function from the State Equation	209
3.7	The Time Response and the State Transition Matrix	210
3.8	Design Examples	214
3.9	Analysis of State Variable Models Using Control Design Software	228
3.10	Sequential Design Example: Disk Drive Read System	232
3.11	Summary	235
	Skills Check	236
	Exercises	239
	Problems	242
	Advanced Problems	250
	Design Problems	252
	Computer Problems	253
	Terms and Concepts	254

CHAPTER 4 *Feedback Control System Characteristics* 256

4.1	Introduction	257
4.2	Error Signal Analysis	259
4.3	Sensitivity of Control Systems to Parameter Variations	261
4.4	Disturbance Signals in a Feedback Control System	264
4.5	Control of the Transient Response	269
4.6	Steady-State Error	272
4.7	The Cost of Feedback	274
4.8	Design Examples	275
4.9	Control System Characteristics Using Control Design Software	285
4.10	Sequential Design Example: Disk Drive Read System	291
4.11	Summary	295
	Skills Check	296
	Exercises	300
	Problems	304
	Advanced Problems	310
	Design Problems	313
	Computer Problems	317
	Terms and Concepts	320

CHAPTER 5 *The Performance of Feedback Control Systems* 321

5.1	Introduction	322
5.2	Test Input Signals	322
5.3	Performance of Second-Order Systems	325
5.4	Effects of a Third Pole and a Zero on the Second-Order System Response	330
5.5	The <i>s</i> -Plane Root Location and the Transient Response	335
5.6	The Steady-State Error of Feedback Control Systems	337
5.7	Performance Indices	344
5.8	The Simplification of Linear Systems	349
5.9	Design Examples	352
5.10	System Performance Using Control Design Software	364
5.11	Sequential Design Example: Disk Drive Read System	370

- 5.12** Summary 372
 Skills Check 373 • Exercises 376 • Problems 379 • Advanced Problems 385 • Design Problems 387 • Computer Problems 390 • Terms and Concepts 393

CHAPTER 6 *The Stability of Linear Feedback Systems* 394

- 6.1** The Concept of Stability 395
6.2 The Routh–Hurwitz Stability Criterion 399
6.3 The Relative Stability of Feedback Control Systems 407
6.4 The Stability of State Variable Systems 408
6.5 Design Examples 411
6.6 System Stability Using Control Design Software 419
6.7 Sequential Design Example: Disk Drive Read System 425
6.8 Summary 427
 Skills Check 428 • Exercises 431 • Problems 433 • Advanced Problems 438 • Design Problems 441 • Computer Problems 443 • Terms and Concepts 445

CHAPTER 7 *The Root Locus Method* 446

- 7.1** Introduction 447
7.2 The Root Locus Concept 447
7.3 The Root Locus Procedure 452
7.4 Parameter Design by the Root Locus Method 466
7.5 Sensitivity and the Root Locus 472
7.6 PID Controllers 477
7.7 Negative Gain Root Locus 488
7.8 Design Examples 493
7.9 The Root Locus Using Control Design Software 502
7.10 Sequential Design Example: Disk Drive Read System 508
7.11 Summary 510
 Skills Check 514 • Exercises 518 • Problems 522 • Advanced Problems 531 • Design Problems 535 • Computer Problems 541 • Terms and Concepts 543

CHAPTER 8 *Frequency Response Methods* 545

- 8.1** Introduction 546
8.2 Frequency Response Plots 548
8.3 Frequency Response Measurements 569
8.4 Performance Specifications in the Frequency Domain 571
8.5 Log-Magnitude and Phase Diagrams 574
8.6 Design Examples 575
8.7 Frequency Response Methods Using Control Design Software 584

8.8	Sequential Design Example: Disk Drive Read System	589
8.9	Summary	591
	Skills Check	596
	Exercises	601
	Problems	604
	Advanced Problems	613
	Design Problems	615
	Computer Problems	618
	Terms and Concepts	620

CHAPTER 9 *Stability in the Frequency Domain* 622

9.1	Introduction	623
9.2	Mapping Contours in the s -Plane	624
9.3	The Nyquist Criterion	630
9.4	Relative Stability and the Nyquist Criterion	641
9.5	Time-Domain Performance Criteria in the Frequency Domain	648
9.6	System Bandwidth	655
9.7	The Stability of Control Systems with Time Delays	655
9.8	Design Examples	659
9.9	PID Controllers in the Frequency Domain	677
9.10	Stability in the Frequency Domain Using Control Design Software	678
9.11	Sequential Design Example: Disk Drive Read System	686
9.12	Summary	689
	Skills Check	698
	Exercises	701
	Problems	707
	Advanced Problems	717
	Design Problems	720
	Computer Problems	725
	Terms and Concepts	727

CHAPTER 10 *The Design of Feedback Control Systems* 728

10.1	Introduction	729
10.2	Approaches to System Design	730
10.3	Cascade Compensators	731
10.4	Phase-Lead Design Using the Bode Plot	735
10.5	Phase-Lead Design Using the Root Locus	741
10.6	System Design Using Integration Compensators	747
10.7	Phase-Lag Design Using the Root Locus	750
10.8	Phase-Lag Design Using the Bode Plot	753
10.9	Design on the Bode Plot Using Analytical Methods	758
10.10	Systems with a Prefilter	759
10.11	Design for Deadbeat Response	762
10.12	Design Examples	764
10.13	System Design Using Control Design Software	774
10.14	Sequential Design Example: Disk Drive Read System	781
10.15	Summary	783
	Skills Check	784
	Exercises	788
	Problems	792
	Advanced Problems	801
	Design Problems	804
	Computer Problems	808
	Terms and Concepts	811

CHAPTER 11 *The Design of State Variable Feedback Systems* 812

11.1	Introduction	813
11.2	Controllability and Observability	813
11.3	Full-State Feedback Control Design	819
11.4	Observer Design	825
11.5	Integrated Full-State Feedback and Observer	829
11.6	Reference Inputs	835
11.7	Optimal Control Systems	837
11.8	Internal Model Design	845
11.9	Design Examples	848
11.10	State Variable Design Using Control Design Software	855
11.11	Sequential Design Example: Disk Drive Read System	860
11.12	Summary	862
	Skills Check	862
	• Exercises	866
	• Problems	868
	• Advanced Problems	872
	• Design Problems	875
	• Computer Problems	878
	• Terms and Concepts	881

CHAPTER 12 *Robust Control Systems* 882

12.1	Introduction	883
12.2	Robust Control Systems and System Sensitivity	884
12.3	Analysis of Robustness	888
12.4	Systems with Uncertain Parameters	890
12.5	The Design of Robust Control Systems	892
12.6	The Design of Robust PID-Controlled Systems	896
12.7	The Robust Internal Model Control System	900
12.8	Design Examples	903
12.9	The Pseudo-Quantitative Feedback System	914
12.10	Robust Control Systems Using Control Design Software	916
12.11	Sequential Design Example: Disk Drive Read System	919
12.12	Summary	921
	Skills Check	923
	• Exercises	927
	• Problems	929
	• Advanced Problems	933
	• Design Problems	936
	• Computer Problems	941
	• Terms and Concepts	944

CHAPTER 13 *Digital Control Systems* 945

13.1	Introduction	946
13.2	Digital Computer Control System Applications	946
13.3	Sampled-Data Systems	948
13.4	The z -Transform	951
13.5	Closed-Loop Feedback Sampled-Data Systems	955
13.6	Performance of a Sampled-Data, Second-Order System	959

13.7	Closed-Loop Systems with Digital Computer Compensation	961
13.8	The Root Locus of Digital Control Systems	964
13.9	Implementation of Digital Controllers	968
13.10	Design Examples	968
13.11	Digital Control Systems Using Control Design Software	977
13.12	Sequential Design Example: Disk Drive Read System	982
13.13	Summary	984
	Skills Check	984
	Exercises	988
	Problems	990
	Advanced Problems	992
	Design Problems	993
	Computer Problems	995
	Terms and Concepts	996

References 997

Index 1014

WEB RESOURCES

Visit www.pearsonhighered.com/controls for links to additional resources including software, video clips, and other material.

APPENDIX A *MATLAB Basics*

APPENDIX B *MathScript RT Module Basics*

APPENDIX C *Symbols, Units, and Conversion Factors*

APPENDIX D *Laplace Transform Pairs*

APPENDIX E *An Introduction to Matrix Algebra*

APPENDIX F *Decibel Conversion*

APPENDIX G *Complex Numbers*

APPENDIX H *z-Transform Pairs*

APPENDIX I *Discrete-Time Evaluation of the Time Response*

APPENDIX J *Design Aids*