

Contents

Preface to the Fourth Edition	ix
Preface to the Third Edition	xi
Preface to the Second Edition	xiii
Preface to the First Edition	xv
Units and Conversion Factors	xvii

Part I Renewable Energy Resources

1. Perspectives on Energy Resources

1.1 Current Renewable Energy Market	3
1.2 Past and Present Energy Resources	17
1.2.1 Energy History	19
1.3 Resource Prospects for the Future	28
1.4 Global Temperature Impacts and Other Climate Impacts	29
1.5 Role of Environmental and Social Issues	31
1.6 The Sustainability Test	33

2. Origin of Renewable Energy Flows

2.1 Solar Radiation	35
2.1.1 Energy Production in Main-sequence Stars Like the Sun	36
2.1.2 Spectral Composition of Solar Radiation	51
2.2 Disposition of Radiation on the Earth	55
2.2.1 Radiation at the Top of the Atmosphere	56
2.2.2 Radiation at the Earth's Surface	63
2.3 Processes near the Surface of the Earth	75
2.3.1 The Atmosphere	76
2.3.2 The Oceans and Continents	110
2.3.3 The Climate	134
2.4 The Energy Cycle of the Earth	141
2.4.1 Flows of Energy and Matter	141
2.4.2 Climate Changes	153
2.5 Inclusion of Nonradiative Energy Flows	172
2.5.1 Vertical Transport in the Atmosphere	172
2.5.2 Circulation Modeling	179
2.5.3 Tides and Waves	198

3. Individual Renewable Energy Sources

3.1	Direct Solar Energy	205
3.1.1	Direct Radiation	207
3.1.2	Scattered Radiation	211
3.1.3	Total Short-wavelength Radiation	214
3.1.4	Long-wavelength Radiation	225
3.1.5	Variability of Solar Radiation	229
3.2	Wind	232
3.2.1	Wind Velocities	233
3.2.2	Kinetic Energy in the Wind	241
3.2.3	Power in the Wind	243
3.2.4	Variability in Wind Power	245
3.3	Water Flows and Reservoirs, Waves, and Tides	250
3.3.1	Ocean Currents	250
3.3.2	River Flows, Hydropower, and Elevated Water Storage	255
3.3.3	Ocean Waves	259
3.3.4	Power in the Waves	264
3.3.5	Tides	268
3.4	Heat Flows, Reservoirs, and Other Sources of Energy	271
3.4.1	Solar-derived Heat Sources	272
3.4.2	Geothermal Flows and Stored Energy	278
3.4.3	Ocean Thermal and Salinity Gradients	285
3.4.4	Nuclear Energy	288
3.4.5	Atmospheric Electricity	293
3.5	Biological Conversion and Stores	294
3.5.1	Photosynthesis	295
3.5.2	Productivity in Different Environments	319
	Part I: Mini Projects, Discussion Issues, and Exercises	330

Part II

Renewable Energy Technologies

4. The Energy Conversion Processes

4.1	General Principles	337
4.1.1	Basic Principles of Energy Conversion	337
4.1.2	Thermodynamic Engine Cycles	345
4.2	Heat Energy Conversion Processes	348
4.2.1	Direct Thermoelectric Conversion	348
4.2.2	Engine Conversion of Solar Energy	352
4.2.3	Heat Pumps	355
4.2.4	Geothermal and Ocean-thermal Conversion	359
4.3	Mechanical Energy Conversion Processes	361
4.3.1	Basic Description of Flow-driven Converters	361
4.3.2	Propeller-type Converters	369
4.3.3	Cross-wind and Other Alternative Converter Concepts	389
4.3.4	Hydro and Tidal Energy Conversion	400

4.3.5 Magneto-hydrodynamic Converters	403
4.3.6 Wave Energy Conversion	404
4.4 Solar Radiation Conversion	413
4.4.1 Photovoltaic Conversion	413
4.4.2 Photo-electrochemical Conversion	441
4.4.3 Solar Thermal Conversion	450
4.4.4 Concentrators and Solar-thermal Electricity Generators	466
4.4.5 Solar Cooling and Other Applications	480
4.5 Electrochemical Energy Conversion	484
4.5.1 Fuel Cells	485
4.5.2 Other Electrochemical Energy Conversion	494
4.6 Bioenergy Conversion Processes	496
4.6.1 Combustion and Composting of Biomass	497
4.6.2 Biological Conversion into Gaseous Fuels	505
4.6.3 Biological Conversion into Liquid Biofuels	522
4.6.4 Enzymatic Decomposition of Cellulosic Material	530

5. Energy Transmission and Storage

5.1 Energy Transmission	533
5.1.1 Heat Transmission	534
5.1.2 Power Transmission	536
5.1.3 Fuel Transmission	539
5.2 Heat Storage	540
5.2.1 Heat Capacity Storage	541
5.2.2 Latent Heat and Chemical Transformation Storage	555
5.3 High-quality Energy Storage	564
5.3.1 Pumped Hydro Storage	566
5.3.2 Flywheels	569
5.3.3 Compressed Gas Storage	577
5.3.4 Battery Storage	589
5.3.5 Other Storage Forms	596
Part II: Mini Projects, Discussion Issues, and Exercises	600

Part III

Renewable Energy Impacts: Planning for Sustainability and Climate Change Aversion

6. Energy System Planning

6.1 Methodology of Energy Planning	609
6.1.1 Use of the Scenario Concept	610
6.1.2 Treatment of the Time Variable	611
6.2 Demand Scenario Construction	614
6.2.1 End-use Precursor Scenarios	614
6.2.2 Intermediary System Efficiency	618
6.2.3 Load Structure	620

6.3 Supply Scenario Construction	645
6.3.1 Photovoltaic Power Production	645
6.3.2 Wind-power Production	649
6.3.3 Food Production	674
6.3.4 Biofuel Production	677
6.4 Implementation Issues	682
6.4.1 System Choice and Optimization	682
6.4.2 Consistency of Simulation	683
6.5 Local Systems	684
6.5.1 Solar Heat or Heat-and-electricity Systems	685
6.5.2 Wind Electricity Systems	710
6.6 Regional Systems	736
6.6.1 Regional Scenario Construction	737
6.6.2 Mediterranean Region	740
6.6.3 North America	753
6.6.4 Northern Europe	755
6.7 A Global Energy Scenario	763

7. Socioeconomic Assessment

7.1 Social and Economic Framework	783
7.1.1 Social Values and the Introduction of Monetary Economy	783
7.1.2 Economic Theory	784
7.1.3 Direct Cost and Inflation	792
7.1.4 Interest and Present Value	793
7.1.5 Cost Profiles and Break-even Prices	797
7.1.6 Indirect Economic Considerations	802
7.2 Scale of Analysis	804
7.2.1 Local and National Economy	804
7.2.2 Regional and Global Economy	812
7.2.3 An Example: Privatization of the Energy Industry	814
7.3 Life-cycle Analysis	817
7.3.1 Methodology of Life-cycle Analysis	818
7.3.2 Communicating with Decision-makers	845
7.3.3 Application of Life-cycle Analysis	849

8. Integrated Approaches

8.1 Greenhouse Warming Mitigation	881
8.1.1 Proposed Fossil-fuel Phase-out Route	881
8.2 Greenhouse Warming Adaptation	888
8.3 Ecological Sustainability	889
Part III: Mini Projects, Discussion Issues, and Exercises	895