

Contents

<i>Prefaces</i>	<i>ix</i>
-----------------	-----------

1	Introduction	1
1.1	Open-cycle single-shaft and twin-shaft arrangements	6
1.2	Multi-spool arrangements	9
1.3	Closed cycles	10
1.4	Aircraft propulsion	12
1.5	Industrial applications	18
1.6	Marine and land transportation	28
1.7	Environmental issues	32
1.8	Some future possibilities	34
1.9	Gas turbine design procedure	38
2	Shaft power cycles	45
2.1	Ideal cycles	45
2.2	Methods of accounting for component losses	53
2.3	Design point performance calculations	73
2.4	Comparative performance of practical cycles	81
2.5	Combined cycles and cogeneration schemes	89
2.6	Closed-cycle gas turbines	93
3	Gas turbine cycles for aircraft propulsion	99
3.1	Criteria of performance	100
3.2	Intake and propelling nozzle efficiencies	104
3.3	Simple turbojet cycle	113
3.4	The turbofan engine	121
3.5	The turboprop engine	136
3.6	The turboshaft engine	139
3.7	Auxiliary Power Units	140
3.8	Thrust augmentation	142
3.9	Miscellaneous topics	145

4	Centrifugal compressors	151
4.1	Principle of operation	152
4.2	Work done and pressure rise	154
4.3	The diffuser	162
4.4	Compressibility effects	167
4.5	Non-dimensional quantities for plotting compressor characteristics	172
4.6	Compressor characteristics	175
4.7	Computerized design procedures	179
5	Axial flow compressors	181
5.1	Basic operation	182
5.2	Elementary theory	185
5.3	Factors affecting stage pressure ratio	188
5.4	Blockage in the compressor annulus	193
5.5	Degree of reaction	195
5.6	Three-dimensional flow	198
5.7	Design process	207
5.8	Blade design	228
5.9	Calculation of stage performance	238
5.10	Compressibility effects	246
5.11	Off-design performance	252
5.12	Axial compressor characteristics	255
5.13	Closure	262
6	Combustion systems	264
6.1	Operational requirements	265
6.2	Types of combustion system	266
6.3	Some important factors affecting combustor design	268
6.4	The combustion process	270
6.5	Combustion chamber performance	275
6.6	Some practical problems	283
6.7	Gas turbine emissions	290
6.8	Coal gasification	301
7	Axial and radial flow turbines	305
7.1	Elementary theory of axial flow turbine	305
7.2	Vortex theory	322
7.3	Choice of blade profile, pitch and chord	328
7.4	Estimation of stage performance	345
7.5	Overall turbine performance	355
7.6	The cooled turbine	356
7.7	The radial flow turbine	366

8	Prediction of performance of simple gas turbines	374
8.1	Component characteristics	376
8.2	Off-design operation of the single-shaft gas turbine	378
8.3	Equilibrium running of a gas generator	383
8.4	Off-design operation of free turbine engine	386
8.5	Off-design operation of the jet engine	397
8.6	Methods of displacing the equilibrium running line	405
8.7	Incorporation of variable pressure losses	409
9	Prediction of performance—further topics	411
9.1	Methods of improving part-load performance	411
9.2	Matching procedures for twin-spool engines	416
9.3	Some notes on the behaviour of twin-spool engines	421
9.4	Matching procedures for turbofan engines	425
9.5	Transient behaviour of gas turbines	427
9.6	Performance deterioration	435
9.7	Principles of control systems	438
Appendix A	Some notes on gas dynamics	443
A.1	Compressibility effects (qualitative treatment)	443
A.2	Basic equations for steady one-dimensional compressible flow of a perfect gas in a duct	447
A.3	Isentropic flow in a duct of varying area	449
A.4	Frictionless flow in a constant area duct with heat transfer	451
A.5	Adiabatic flow in a constant area duct with friction	452
A.6	Plane normal shock waves	454
A.7	Oblique shock waves	458
A.8	Isentropic two-dimensional supersonic expansion and compression	461
Appendix B	Problems	463
Appendix C	References	475
Index		483