

CONTENTS

Preface xvii

Summary 38
References and Suggested Readings 39
Problems 39

CHAPTER ONE

INTRODUCTION AND BASIC CONCEPTS 1

1-1 Thermodynamics and Energy 2

Application Areas of Thermodynamics 3

1-2 Importance of Dimensions and Units 3

Some SI and English Units 6

Dimensional Homogeneity 8

Unity Conversion Ratios 9

1-3 Systems and Control Volumes 10

1-4 Properties of a System 12

Continuum 13

1-5 Density and Specific Gravity 13

1-6 State and Equilibrium 14

The State Postulate 15

1-7 Processes and Cycles 15

The Steady-Flow Process 16

1-8 Temperature and the Zeroth Law of Thermodynamics 17

Temperature Scales 18

The International Temperature Scale of 1990 (ITS-90) 20

1-9 Pressure 21

Variation of Pressure with Depth 23

1-10 The Manometer 26

Other Pressure Measurement Devices 28

1-11 The Barometer and Atmospheric Pressure 29

1-12 Problem-Solving Technique 33

Step 1: Problem Statement 33

Step 2: Schematic 33

Step 3: Assumptions and Approximations 33

Step 4: Physical Laws 34

Step 5: Properties 34

Step 6: Calculations 34

Step 7: Reasoning, Verification, and Discussion 34

Engineering Software Packages 35

Engineering Equation Solver (EES) 36

A Remark on Significant Digits 37

CHAPTER TWO

ENERGY, ENERGY TRANSFER, AND GENERAL ENERGY ANALYSIS 51

2-1 Introduction 52

2-2 Forms of Energy 53

Some Physical Insight to Internal Energy 55

More on Nuclear Energy 56

Mechanical Energy 58

2-3 Energy Transfer by Heat 60

Historical Background on Heat 61

2-4 Energy Transfer by Work 62

Electrical Work 65

2-5 Mechanical Forms of Work 66

Shaft Work 66

Spring Work 67

Work Done on Elastic Solid Bars 67

Work Associated with the Stretching of a Liquid Film 68

Work Done to Raise or to Accelerate a Body 68

Nonmechanical Forms of Work 69

2-6 The First Law of Thermodynamics 70

Energy Balance 71

Energy Change of a System, ΔE_{system} 72

Mechanisms of Energy Transfer, E_{in} and E_{out} 73

2-7 Energy Conversion Efficiencies 78

Efficiencies of Mechanical and Electrical Devices 82

2-8 Energy and Environment 86

Ozone and Smog 87

Acid Rain 88

The Greenhouse Effect: Global Warming and Climate Change 89

Topic of Special Interest:

Mechanisms of Heat Transfer 92

Summary 96

References and Suggested Readings 97

Problems 98

CHAPTER THREE

PROPERTIES OF PURE SUBSTANCES 111

3-1	Pure Substance	112
3-2	Phases of a Pure Substance	112
3-3	Phase-Change Processes of Pure Substances	113
	Compressed Liquid and Saturated Liquid	114
	Saturated Vapor and Superheated Vapor	114
	Saturation Temperature and Saturation Pressure	115
	Some Consequences of T_{sat} and P_{sat} Dependence	116
3-4	Property Diagrams for Phase-Change Processes	118
1	The $T-v$ Diagram	118
2	The $P-v$ Diagram	120
	Extending the Diagrams to Include the Solid Phase	120
3	The $P-T$ Diagram	122
	The $P-v-T$ Surface	123
3-5	Property Tables	124
	Enthalpy—A Combination Property	124
1a	Saturated Liquid and Saturated Vapor States	125
1b	Saturated Liquid–Vapor Mixture	127
2	Superheated Vapor	130
3	Compressed Liquid	131
	Reference State and Reference Values	132
3-6	The Ideal-Gas Equation of State	134
	Is Water Vapor an Ideal Gas?	137
3-7	Compressibility Factor—A Measure of Deviation from Ideal-Gas Behavior	137
3-8	Other Equations of State	141
	van der Waals Equation of State	141
	Beattie–Bridgeman Equation of State	142
	Benedict–Webb–Rubin Equation of State	143
	Virial Equation of State	143
	<i>Topic of Special Interest: Vapor Pressure and Phase Equilibrium</i>	146
	Summary	150
	References and Suggested Readings	151
	Problems	151

CHAPTER FOUR

ENERGY ANALYSIS OF CLOSED SYSTEMS 163

4-1	Moving Boundary Work	164
	Polytropic Process	168

4-2	Energy Balance for Closed Systems	169
4-3	Specific Heats	174
4-4	Internal Energy, Enthalpy, and Specific Heats of Ideal Gases	176
	Specific Heat Relations of Ideal Gases	178
4-5	Internal Energy, Enthalpy, and Specific Heats of Solids and Liquids	183
	Internal Energy Changes	184
	Enthalpy Changes	184
	<i>Topic of Special Interest: Thermodynamic Aspects of Biological Systems</i>	187
	Summary	195
	References and Suggested Readings	195
	Problems	196

CHAPTER FIVE

MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES 213

5-1	Conservation of Mass	214
	Mass and Volume Flow Rates	214
	Conservation of Mass Principle	216
	Mass Balance for Steady-Flow Processes	217
	Special Case: Incompressible Flow	218
5-2	Flow Work and the Energy of a Flowing Fluid	221
	Total Energy of a Flowing Fluid	221
	Energy Transport by Mass	222
5-3	Energy Analysis of Steady-Flow Systems	224
5-4	Some Steady-Flow Engineering Devices	227
1	Nozzles and Diffusers	228
2	Turbines and Compressors	231
3	Throttling Valves	233
4a	Mixing Chambers	235
4b	Heat Exchangers	236
5	Pipe and Duct Flow	239
5-5	Energy Analysis of Unsteady-Flow Processes	240
	<i>Topic of Special Interest: General Energy Equation</i>	245
	Summary	249
	References and Suggested Readings	250
	Problems	250

CHAPTER SIX**THE SECOND LAW OF THERMODYNAMICS 273**

6-1	Introduction to the Second Law	274
6-2	Thermal Energy Reservoirs	275
6-3	Heat Engines	276
	Thermal Efficiency	277
	Can We Save Q_{out} ?	279
	The Second Law of Thermodynamics: Kelvin-Planck Statement	281
6-4	Refrigerators and Heat Pumps	281
	Coefficient of Performance	282
	Heat Pumps	283
	Performance of Refrigerators, Air-Conditioners, and Heat Pumps	284
	The Second Law of Thermodynamics: Clausius Statement	286
	Equivalence of the Two Statements	287
6-5	Perpetual-Motion Machines	288
6-6	Reversible and Irreversible Processes	290
	Irreversibilities	291
	Internally and Externally Reversible Processes	293
6-7	The Carnot Cycle	293
	The Reversed Carnot Cycle	295
6-8	The Carnot Principles	295
6-9	The Thermodynamic Temperature Scale	297
6-10	The Carnot Heat Engine	299
	The Quality of Energy	301
	Quantity versus Quality in Daily Life	301
6-11	The Carnot Refrigerator and Heat Pump	302
	<i>Topic of Special Interest: Household Refrigerators</i>	305
	Summary	309
	References and Suggested Readings	310
	Problems	310

CHAPTER SEVEN**ENTROPY 327**

7-1	Entropy	328
	<i>A Special Case: Internally Reversible Isothermal Heat Transfer Processes</i>	330

7-2	The Increase of Entropy Principle	331
	Some Remarks about Entropy	334
7-3	Entropy Change of Pure Substances	335
7-4	Isentropic Processes	338
7-5	Property Diagrams Involving Entropy	340
7-6	What Is Entropy?	341
	Entropy and Entropy Generation in Daily Life	343
7-7	The Tds Relations	345
7-8	Entropy Change of Liquids and Solids	346
7-9	The Entropy Change of Ideal Gases	350
	Constant Specific Heats (Approximate Analysis)	350
	Variable Specific Heats (Exact Analysis)	351
	Isentropic Processes of Ideal Gases	353
	Constant Specific Heats (Approximate Analysis)	353
	Variable Specific Heats (Exact Analysis)	354
	Relative Pressure and Relative Specific Volume	354
7-10	Reversible Steady-Flow Work	357
	Proof that Steady-Flow Devices Deliver the Most and Consume the Least Work When the Process Is Reversible	360
7-11	Minimizing the Compressor Work	360
	Multistage Compression with Intercooling	362
7-12	Isentropic Efficiencies of Steady-Flow Devices	364
	Isentropic Efficiency of Turbines	365
	Isentropic Efficiencies of Compressors and Pumps	367
	Isentropic Efficiency of Nozzles	369
7-13	Entropy Balance	371
	Entropy Change of a System, ΔS_{system}	371
	Mechanisms of Entropy Transfer, S_{in} and S_{out}	372
	1 Heat Transfer	372
	2 Mass Flow	373
	Entropy Generation, S_{gen}	373
	Closed Systems	374
	Control Volumes	375
	Entropy Generation Associated with a Heat Transfer Process	382
	<i>Topic of Special Interest: Reducing the Cost of Compressed Air</i>	383
	Summary	392
	References and Suggested Readings	393
	Problems	394

CHAPTER EIGHT**EXERGY: A MEASURE OF WORK POTENTIAL 419**

- 8-1** Exergy: Work Potential of Energy 420
 Exergy (Work Potential) Associated with Kinetic and Potential Energy 421
- 8-2** Reversible Work and Irreversibility 423
- 8-3** Second-Law Efficiency, η_{II} 428
- 8-4** Exergy Change of a System 431
 Exergy of a Fixed Mass: Nonflow (or Closed System)
 Exergy 431
 Exergy of a Flow Stream: Flow (or Stream) Exergy 434
- 8-5** Exergy Transfer by Heat, Work, and Mass 436
 Exergy by Heat Transfer, Q 437
 Exergy Transfer by Work, W 438
 Exergy Transfer by Mass, m 438
- 8-6** The Decrease of Exergy Principle and Exergy Destruction 439
 Exergy Destruction 440
- 8-7** Exergy Balance: Closed Systems 441
- 8-8** Exergy Balance: Control Volumes 452
 Exergy Balance for Steady-Flow Systems 453
 Reversible Work, W_{rev} 454
 Second-Law Efficiency of Steady-Flow Devices, η_{II} 454
- Topic of Special Interest: Second-Law Aspects of Daily Life 461*
 Summary 465
 References and Suggested Readings 466
 Problems 466

CHAPTER NINE**GAS POWER CYCLES 483**

- 9-1** Basic Considerations in the Analysis of Power Cycles 484
- 9-2** The Carnot Cycle and Its Value in Engineering 486
- 9-3** Air-Standard Assumptions 488
- 9-4** An Overview of Reciprocating Engines 488

- 9-5** Otto Cycle: The Ideal Cycle for Spark-Ignition Engines 490
- 9-6** Diesel Cycle: The Ideal Cycle for Compression-Ignition Engines 496
- 9-7** Stirling and Ericsson Cycles 499
- 9-8** Brayton Cycle: The Ideal Cycle for Gas-Turbine Engines 503
 Development of Gas Turbines 506
 Deviation of Actual Gas-Turbine Cycles from Idealized Ones 509
- 9-9** The Brayton Cycle with Regeneration 510
- 9-10** The Brayton Cycle with Intercooling, Reheating, and Regeneration 513
- 9-11** Ideal Jet-Propulsion Cycles 517
 Modifications to Turbojet Engines 521
- 9-12** Second-Law Analysis of Gas Power Cycles 523
- Topic of Special Interest: Saving Fuel and Money by Driving Sensibly 527*
 Summary 533
 References and Suggested Readings 535
 Problems 535

CHAPTER TEN**VAPOR AND COMBINED POWER CYCLES 551**

- 10-1** The Carnot Vapor Cycle 552
- 10-2** Rankine Cycle: The Ideal Cycle for Vapor Power Cycles 553
 Energy Analysis of the Ideal Rankine Cycle 553
- 10-3** Deviation of Actual Vapor Power Cycles from Idealized Ones 556
- 10-4** How Can We Increase the Efficiency of the Rankine Cycle? 559
 Lowering the Condenser Pressure
 (*Lowers $T_{low,avg}$*) 559
 Superheating the Steam to High Temperatures
 (*Increases $T_{high,avg}$*) 560
 Increasing the Boiler Pressure
 (*Increases $T_{high,avg}$*) 560
- 10-5** The Ideal Reheat Rankine Cycle 563

10-6	The Ideal Regenerative Rankine Cycle	567
Open Feedwater Heaters	567	
Closed Feedwater Heaters	569	
10-7	Second-Law Analysis of Vapor Power Cycles	575
10-8	Cogeneration	577
10-9	Combined Gas-Vapor Power Cycles	582
<i>Topic of Special Interest: Binary Vapor Cycles</i> 585		
Summary	588	
References and Suggested Readings	588	
Problems	589	

CHAPTER ELEVEN

REFRIGERATION CYCLES 607

11-1	Refrigerators and Heat Pumps	608
11-2	The Reversed Carnot Cycle	609
11-3	The Ideal Vapor-Compression Refrigeration Cycle	610
11-4	Actual Vapor-Compression Refrigeration Cycle	613
11-5	Second-Law Analysis of Vapor-Compression Refrigeration Cycle	615
11-6	Selecting The Right Refrigerant	620
11-7	Heat Pump Systems	622
11-8	Innovative Vapor-Compression Refrigeration Systems	623
Cascade Refrigeration Systems	624	
Multistage Compression Refrigeration Systems	626	
Multipurpose Refrigeration Systems with a Single Compressor	628	
Liquefaction of Gases	629	
11-9	Gas Refrigeration Cycles	630
11-10	Absorption Refrigeration Systems	633
<i>Topic of Special Interest: Thermoelectric Power Generation and Refrigeration Systems</i> 636		
Summary	638	
References and Suggested Readings	639	
Problems	639	

CHAPTER TWELVE

THERMODYNAMIC PROPERTY RELATIONS 657

12-1	A Little Math—Partial Derivatives and Associated Relations	658
Partial Differentials	659	
Partial Differential Relations	661	
12-2	The Maxwell Relations	663
12-3	The Clapeyron Equation	664
12-4	General Relations for du , dh , ds , c_v and c_p	667
Internal Energy Changes	668	
Enthalpy Changes	668	
Entropy Changes	669	
Specific Heats c_v and c_p	670	
12-5	The Joule-Thomson Coefficient	674
12-6	The Δh , Δu , and Δs of Real Gases	676
Enthalpy Changes of Real Gases	676	
Internal Energy Changes of Real Gases	677	
Entropy Changes of Real Gases	678	
Summary	681	
References and Suggested Readings	682	
Problems	682	

CHAPTER THIRTEEN

GAS MIXTURES 689

13-1	Composition of a Gas Mixture: Mass and Mole Fractions	690
13-2	P - v - T Behavior of Gas Mixtures: Ideal and Real Gases	692
Ideal-Gas Mixtures	693	
Real-Gas Mixtures	693	
13-3	Properties of Gas Mixtures: Ideal and Real Gases	697
Ideal-Gas Mixtures	698	
Real-Gas Mixtures	701	
<i>Topic of Special Interest: Chemical Potential and the Separation Work of Mixtures</i> 705		
Summary	716	
References and Suggested Readings	717	
Problems	717	

CHAPTER FOURTEEN

GAS–VAPOR MIXTURES AND AIR-CONDITIONING 727

- 14–1** Dry and Atmospheric Air 728
14–2 Specific and Relative Humidity of Air 729
14–3 Dew-Point Temperature 731
14–4 Adiabatic Saturation and Wet-Bulb Temperatures 733
14–5 The Psychrometric Chart 736
14–6 Human Comfort and Air-Conditioning 737
14–7 Air-Conditioning Processes 739
 Simple Heating and Cooling ($\omega = \text{constant}$) 740
 Heating with Humidification 741
 Cooling with Dehumidification 742
 Evaporative Cooling 744
 Adiabatic Mixing of Airstreams 745
 Wet Cooling Towers 747
 Summary 749
 References and Suggested Readings 751
 Problems 751

CHAPTER FIFTEEN

CHEMICAL REACTIONS 763

- 15–1** Fuels and Combustion 764
15–2 Theoretical and Actual Combustion Processes 768
15–3 Enthalpy of Formation and Enthalpy of Combustion 775
15–4 First-Law Analysis of Reacting Systems 778
 Steady-Flow Systems 779
 Closed Systems 780
15–5 Adiabatic Flame Temperature 784
15–6 Entropy Change of Reacting Systems 786
15–7 Second-Law Analysis of Reacting Systems 788
Topic of Special Interest: Fuel Cells 794
 Summary 796
 References and Suggested Readings 797
 Problems 797

CHAPTER SIXTEEN

CHEMICAL AND PHASE EQUILIBRIUM 809

- 16–1** Criterion for Chemical Equilibrium 810
16–2 The Equilibrium Constant for Ideal-Gas Mixtures 812
16–3 Some Remarks about the K_p of Ideal-Gas Mixtures 816
16–4 Chemical Equilibrium for Simultaneous Reactions 820
16–5 Variation of K_p with Temperature 822
16–6 Phase Equilibrium 824
 Phase Equilibrium for a Single-Component System 824
 The Phase Rule 826
 Phase Equilibrium for a Multicomponent System 826
 Summary 832
 References and Suggested Readings 833
 Problems 833

CHAPTER SEVENTEEN

COMPRESSIBLE FLOW 843

- 17–1** Stagnation Properties 844
17–2 Speed of Sound and Mach Number 847
17–3 One-Dimensional Isentropic Flow 849
 Variation of Fluid Velocity with Flow Area 852
 Property Relations for Isentropic Flow of Ideal Gases 854
17–4 Isentropic Flow Through Nozzles 856
 Converging Nozzles 856
 Converging–Diverging Nozzles 861
17–5 Shock Waves and Expansion Waves 865
 Normal Shocks 865
 Oblique Shocks 872
 Prandtl–Meyer Expansion Waves 876
17–6 Duct Flow with Heat Transfer and Negligible Friction (Rayleigh Flow) 880
 Property Relations for Rayleigh Flow 886
 Choked Rayleigh Flow 887
17–7 Steam Nozzles 889
 Summary 892
 References and Suggested Readings 893
 Problems 894

APPENDIX

PROPERTY TABLES AND CHARTS

903

TABLE A-1	Molar mass, gas constant, and critical-point properties	904
TABLE A-2	Ideal-gas specific heats of various common gases	905
TABLE A-3	Properties of common liquids, solids, and foods	908
TABLE A-4	Saturated water—Temperature table	910
TABLE A-5	Saturated water—Pressure table	912
TABLE A-6	Superheated water	914
TABLE A-7	Compressed liquid water	918
TABLE A-8	Saturated ice–water vapor	919
FIGURE A-9	<i>T-s</i> diagram for water	920
FIGURE A-10	Mollier diagram for water	921
TABLE A-11	Saturated refrigerant-134a—Temperature table	922
TABLE A-12	Saturated refrigerant-134a—Pressure table	924
TABLE A-13	Superheated refrigerant-134a	925
FIGURE A-14	<i>P-h</i> diagram for refrigerant-134a	927
FIGURE A-15	Nelson–Obert generalized compressibility chart	928
TABLE A-16	Properties of the atmosphere at high altitude	929
TABLE A-17	Ideal-gas properties of air	930
TABLE A-18	Ideal-gas properties of nitrogen, N_2	932
TABLE A-19	Ideal-gas properties of oxygen, O_2	934

TABLE A-20	Ideal-gas properties of carbon dioxide, CO_2	936
TABLE A-21	Ideal-gas properties of carbon monoxide, CO	938
TABLE A-22	Ideal-gas properties of hydrogen, H_2	940
TABLE A-23	Ideal-gas properties of water vapor, H_2O	941
TABLE A-24	Ideal-gas properties of monatomic oxygen, O	943
TABLE A-25	Ideal-gas properties of hydroxyl, OH	943
TABLE A-26	Enthalpy of formation, Gibbs function of formation, and absolute entropy at $25^\circ C$, 1 atm	944
TABLE A-27	Properties of some common fuels and hydrocarbons	945
TABLE A-28	Natural logarithms of the equilibrium constant K_p	946
FIGURE A-29	Generalized enthalpy departure chart	947
FIGURE A-30	Generalized entropy departure chart	948
FIGURE A-31	Psychrometric chart at 1 atm total pressure	949
TABLE A-32	One-dimensional isentropic compressible-flow functions for an ideal gas with $k = 1.4$	950
TABLE A-33	One-dimensional normal-shock functions for an ideal gas with $k = 1.4$	951
TABLE A-34	Rayleigh flow functions for an ideal gas with $k = 1.4$	952
Index	953	