

Contents

<i>Preface</i>	<i>page</i> vii
<i>Nomenclature</i>	xii
1 Introduction	1
1.1 The fact of turbulent flow	1
1.2 Broad options in modelling	2
1.3 A preview of the mean-strain generation processes in the stress-transport equation	5
1.4 Some consequences of the no-slip boundary condition at a wall	9
1.5 Sequencing of the material	11
2 The exact equations	13
2.1 The underpinning conservation equations	13
2.2 The Reynolds equations	15
2.3 The second-moment equations	23
3 Characterization of stress and flux dynamics: elements required for modelling	33
3.1 Introduction	33
3.2 Energy flow processes in turbulence	33
3.3 The spectral character of turbulence	38
3.4 The ε -equation	43
3.5 Transport equation for the mean-square scalar variance, $\overline{\theta^2}$	46
3.6 Transport equation for dissipation of scalar variance, $\varepsilon_{\theta\theta}$	49
3.7 Turbulence anisotropy, invariants and realizability	50
4 Approaches to closure	60
4.1 General remarks and basic guidelines	60
4.2 Pressure interactions, Φ_{ij} and $\Phi_{\theta j}$: the Poisson equation	63

4.3 The basic second-moment closure for high-Re _t flow regions	67
4.4 Pressure-strain models from tensor expansion	86
4.5 Turbulence affected by force fields	113
4.6 Modelling the triple moments	134
5 Modelling the scale-determining equations	143
5.1 The energy dissipation rate, ε	143
5.2 Other scale-determining equations	156
5.3 Multi-scale approaches	160
5.4 Determining $\varepsilon_{\theta\theta}$, the dissipation rate of $\overline{\theta^2}$	167
6 Modelling in the immediate wall vicinity and at low Re_t	170
6.1 The nature of viscous and wall effects: options for modelling	170
6.2 The structure of the near-wall sublayer	173
6.3 Wall integration (WIN) schemes	188
6.4 Illustration of the performance of two near-wall models	214
6.5 Elliptic relaxation concept	229
7 Simplified schemes	240
7.1 Rationale and organization	240
7.2 Reduced transport-equation models	241
7.3 Algebraic truncations of the second-moment equations	247
7.4 Linear eddy-viscosity models	270
7.5 The use of ASMs and linear EVMs within an unsteady RANS framework	301
8 Wall functions	313
8.1 Early proposals	313
8.2 Towards a generalization of the wall-function concept: preliminaries	319
8.3 Analytical wall functions (AWF): the Manchester scheme	322
8.4 A Simplified AWF (SAWF): the Delft scheme	331
8.5 Blended wall treatment (BWT)	335
8.6 Numerical wall functions (NWF)	341
<i>References</i>	348
<i>Index</i>	373