

CONTENTS

CHAPTER 1. TRAFFIC FLOW THEORIES	1
Macroscopic Traffic Flow Theory – Kinematic Waves in Traffic	1
Shock waves	6
Flow versus concentration relationships	9
The Boltzman-like Model of Traffic	17
The two-fluid model of traffic	19
Microscopic Traffic Flow Theory – Car-Following Models	21
Local stability	22
Asymptotic stability	26
Acceleration noise	31
Non-linear car-following models	33
Some Questionable Paradoxes	36
The Smeed paradox	36
The Braess paradox	38
Additional Flow Theory Work, and Future Challenges	40

CHAPTER 2. QUEUEING AND DELAYS AT ISOLATED INTERSECTIONS	45
Traffic Characteristics	46
The Gap Acceptance Function	49
The Delay to a Single Car	50
Delays to Pedestrians	63
Queueing and Delays of Vehicles	71
The Delay at a Traffic Signal	77
Evaluation of delays	79
Optimization of traffic signal settings	87
The vehicle-actuated traffic signal	89
CHAPTER 3. TRAFFIC CONTROL	101
Objectives of Traffic Control	103
Single, Isolated Intersection	105
Synchronization Schemes for Arterial Traffic	106
A mixed integer-linear programming approach	112
The effect of queues on progression	115
The TRANSYT method	118
The Combination method	121
The SIGOP program	124
Traffic Responsive Operation of Traffic Lights	128
Single intersection	128
Systems of intersections	132
Additional contributions:	
The SCOOT program	135
The OPAC, PRODYN, CRONOS, and COP programs	135
The Onset of Oversaturation	136

Oversaturated Systems	138
A single oversaturated intersection	138
Complex oversaturated systems	154
Oversaturated Store-and-Forward Networks	165
Freeway Control	171
Systems Affected by Geometric Details	172
<u>CHAPTER 4. TRAFFIC GENERATION, DISTRIBUTION, AND ASSIGNMENT</u>	185
Network Representation of a Transportation System	186
Trip Generation and Distribution	189
Trip generation	190
Trip distribution	198
Time-Independent Traffic Assignment	206
Deterministic traffic assignment models	207
Discrete choice, stochastic, models	211
Global Network Optimization Models	219
Dynamic Traffic Assignment	225
Traffic Assignment in Congested Systems	229
Delivery of traveller information services	237
<u>APPENDIX</u>	
Application of Kalman Filtering for Density Estimation in Traffic Networks	245
<i>Index</i>	257