

CONTENTS

Welcome	xviii
How to Use This Book to Study for an Exam	xix
Two all-purpose study tips	xx
Key sections for exam review (by topic)	xx
Acknowledgments	xxiii
1 Functions, Graphs, and Lines	1
1.1 Functions	1
1.1.1 Interval notation	3
1.1.2 Finding the domain	4
1.1.3 Finding the range using the graph	5
1.1.4 The vertical line test	6
1.2 Inverse Functions	7
1.2.1 The horizontal line test	8
1.2.2 Finding the inverse	9
1.2.3 Restricting the domain	9
1.2.4 Inverses of inverse functions	11
1.3 Composition of Functions	11
1.4 Odd and Even Functions	14
1.5 Graphs of Linear Functions	17
1.6 Common Functions and Graphs	19
2 Review of Trigonometry	25
2.1 The Basics	25
2.2 Extending the Domain of Trig Functions	28
2.2.1 The ASTC method	31
2.2.2 Trig functions outside $[0, 2\pi]$	33
2.3 The Graphs of Trig Functions	35
2.4 Trig Identities	39

3 Introduction to Limits	41
3.1 Limits: The Basic Idea	41
3.2 Left-Hand and Right-Hand Limits	43
3.3 When the Limit Does Not Exist	45
3.4 Limits at ∞ and $-\infty$	47
3.4.1 Large numbers and small numbers	48
3.5 Two Common Misconceptions about Asymptotes	50
3.6 The Sandwich Principle	51
3.7 Summary of Basic Types of Limits	54
4 How to Solve Limit Problems Involving Polynomials	57
4.1 Limits Involving Rational Functions as $x \rightarrow a$	57
4.2 Limits Involving Square Roots as $x \rightarrow a$	61
4.3 Limits Involving Rational Functions as $x \rightarrow \infty$	61
4.3.1 Method and examples	64
4.4 Limits Involving Poly-type Functions as $x \rightarrow \infty$	66
4.5 Limits Involving Rational Functions as $x \rightarrow -\infty$	70
4.6 Limits Involving Absolute Values	72
5 Continuity and Differentiability	75
5.1 Continuity	75
5.1.1 Continuity at a point	76
5.1.2 Continuity on an interval	77
5.1.3 Examples of continuous functions	77
5.1.4 The Intermediate Value Theorem	80
5.1.5 A harder IVT example	82
5.1.6 Maxima and minima of continuous functions	82
5.2 Differentiability	84
5.2.1 Average speed	84
5.2.2 Displacement and velocity	85
5.2.3 Instantaneous velocity	86
5.2.4 The graphical interpretation of velocity	87
5.2.5 Tangent lines	88
5.2.6 The derivative function	90
5.2.7 The derivative as a limiting ratio	91
5.2.8 The derivative of linear functions	93
5.2.9 Second and higher-order derivatives	94
5.2.10 When the derivative does not exist	94
5.2.11 Differentiability and continuity	96
6 How to Solve Differentiation Problems	99
6.1 Finding Derivatives Using the Definition	99
6.2 Finding Derivatives (the Nice Way)	102
6.2.1 Constant multiples of functions	103

6.2.2	Sums and differences of functions	103
6.2.3	Products of functions via the product rule	104
6.2.4	Quotients of functions via the quotient rule	105
6.2.5	Composition of functions via the chain rule	107
6.2.6	A nasty example	109
6.2.7	Justification of the product rule and the chain rule	111
6.3	Finding the Equation of a Tangent Line	114
6.4	Velocity and Acceleration	114
6.4.1	Constant negative acceleration	115
6.5	Limits Which Are Derivatives in Disguise	117
6.6	Derivatives of Piecewise-Defined Functions	119
6.7	Sketching Derivative Graphs Directly	123
7	Trig Limits and Derivatives	127
7.1	Limits Involving Trig Functions	127
7.1.1	The small case	128
7.1.2	Solving problems—the small case	129
7.1.3	The large case	134
7.1.4	The “other” case	137
7.1.5	Proof of an important limit	137
7.2	Derivatives Involving Trig Functions	141
7.2.1	Examples of differentiating trig functions	143
7.2.2	Simple harmonic motion	145
7.2.3	A curious function	146
8	Implicit Differentiation and Related Rates	149
8.1	Implicit Differentiation	149
8.1.1	Techniques and examples	150
8.1.2	Finding the second derivative implicitly	154
8.2	Related Rates	156
8.2.1	A simple example	157
8.2.2	A slightly harder example	159
8.2.3	A much harder example	160
8.2.4	A really hard example	162
9	Exponentials and Logarithms	167
9.1	The Basics	167
9.1.1	Review of exponentials	167
9.1.2	Review of logarithms	168
9.1.3	Logarithms, exponentials, and inverses	169
9.1.4	Log rules	170
9.2	Definition of e	173
9.2.1	A question about compound interest	173
9.2.2	The answer to our question	173
9.2.3	More about e and logs	175
9.3	Differentiation of Logs and Exponentials	177

9.3.1 Examples of differentiating exponentials and logs	179
9.4 How to Solve Limit Problems Involving Exponentials or Logs	180
9.4.1 Limits involving the definition of e	181
9.4.2 Behavior of exponentials near 0	182
9.4.3 Behavior of logarithms near 1	183
9.4.4 Behavior of exponentials near ∞ or $-\infty$	184
9.4.5 Behavior of logs near ∞	187
9.4.6 Behavior of logs near 0	188
9.5 Logarithmic Differentiation	189
9.5.1 The derivative of x^a	192
9.6 Exponential Growth and Decay	193
9.6.1 Exponential growth	194
9.6.2 Exponential decay	195
9.7 Hyperbolic Functions	198
10 Inverse Functions and Inverse Trig Functions	201
10.1 The Derivative and Inverse Functions	201
10.1.1 Using the derivative to show that an inverse exists	201
10.1.2 Derivatives and inverse functions: what can go wrong	203
10.1.3 Finding the derivative of an inverse function	204
10.1.4 A big example	206
10.2 Inverse Trig Functions	208
10.2.1 Inverse sine	208
10.2.2 Inverse cosine	211
10.2.3 Inverse tangent	213
10.2.4 Inverse secant	216
10.2.5 Inverse cosecant and inverse cotangent	217
10.2.6 Computing inverse trig functions	218
10.3 Inverse Hyperbolic Functions	220
10.3.1 The rest of the inverse hyperbolic functions	222
11 The Derivative and Graphs	225
11.1 Extrema of Functions	225
11.1.1 Global and local extrema	225
11.1.2 The Extreme Value Theorem	227
11.1.3 How to find global maxima and minima	228
11.2 Rolle's Theorem	230
11.3 The Mean Value Theorem	233
11.3.1 Consequences of the Mean Value Theorem	235
11.4 The Second Derivative and Graphs	237
11.4.1 More about points of inflection	238
11.5 Classifying Points Where the Derivative Vanishes	239
11.5.1 Using the first derivative	240
11.5.2 Using the second derivative	242

12 Sketching Graphs	245
12.1 How to Construct a Table of Signs	245
12.1.1 Making a table of signs for the derivative	247
12.1.2 Making a table of signs for the second derivative	248
12.2 The Big Method	250
12.3 Examples	252
12.3.1 An example without using derivatives	252
12.3.2 The full method: example 1	254
12.3.3 The full method: example 2	256
12.3.4 The full method: example 3	259
12.3.5 The full method: example 4	262
13 Optimization and Linearization	267
13.1 Optimization	267
13.1.1 An easy optimization example	267
13.1.2 Optimization problems: the general method	269
13.1.3 An optimization example	269
13.1.4 Another optimization example	271
13.1.5 Using implicit differentiation in optimization	274
13.1.6 A difficult optimization example	275
13.2 Linearization	278
13.2.1 Linearization in general	279
13.2.2 The differential	281
13.2.3 Linearization summary and examples	283
13.2.4 The error in our approximation	285
13.3 Newton's Method	287
14 L'Hôpital's Rule and Overview of Limits	293
14.1 L'Hôpital's Rule	293
14.1.1 Type A : 0/0 case	294
14.1.2 Type A : $\pm\infty/\pm\infty$ case	296
14.1.3 Type B1 ($\infty - \infty$)	298
14.1.4 Type B2 ($0 \times \pm\infty$)	299
14.1.5 Type C ($1^{\pm\infty}$, 0^0 , or ∞^0)	301
14.1.6 Summary of l'Hôpital's Rule types	302
14.2 Overview of Limits	303
15 Introduction to Integration	307
15.1 Sigma Notation	307
15.1.1 A nice sum	310
15.1.2 Telescoping series	311
15.2 Displacement and Area	314
15.2.1 Three simple cases	314
15.2.2 A more general journey	317
15.2.3 Signed area	319
15.2.4 Continuous velocity	320

15.2.5 Two special approximations	323
16 Definite Integrals	325
16.1 The Basic Idea	325
16.1.1 Some easy examples	327
16.2 Definition of the Definite Integral	330
16.2.1 An example of using the definition	331
16.3 Properties of Definite Integrals	334
16.4 Finding Areas	339
16.4.1 Finding the unsigned area	339
16.4.2 Finding the area between two curves	342
16.4.3 Finding the area between a curve and the y -axis	344
16.5 Estimating Integrals	346
16.5.1 A simple type of estimation	347
16.6 Averages and the Mean Value Theorem for Integrals	350
16.6.1 The Mean Value Theorem for integrals	351
16.7 A Nonintegrable Function	353
17 The Fundamental Theorems of Calculus	355
17.1 Functions Based on Integrals of Other Functions	355
17.2 The First Fundamental Theorem	358
17.2.1 Introduction to antiderivatives	361
17.3 The Second Fundamental Theorem	362
17.4 Indefinite Integrals	364
17.5 How to Solve Problems: The First Fundamental Theorem	366
17.5.1 Variation 1: variable left-hand limit of integration	367
17.5.2 Variation 2: one tricky limit of integration	367
17.5.3 Variation 3: two tricky limits of integration	369
17.5.4 Variation 4: limit is a derivative in disguise	370
17.6 How to Solve Problems: The Second Fundamental Theorem	371
17.6.1 Finding indefinite integrals	371
17.6.2 Finding definite integrals	374
17.6.3 Unsigned areas and absolute values	376
17.7 A Technical Point	380
17.8 Proof of the First Fundamental Theorem	381
18 Techniques of Integration, Part One	383
18.1 Substitution	383
18.1.1 Substitution and definite integrals	386
18.1.2 How to decide what to substitute	389
18.1.3 Theoretical justification of the substitution method	392
18.2 Integration by Parts	393
18.2.1 Some variations	394
18.3 Partial Fractions	397

18.3.1 The algebra of partial fractions	398
18.3.2 Integrating the pieces	401
18.3.3 The method and a big example	404
19 Techniques of Integration, Part Two	409
19.1 Integrals Involving Trig Identities	409
19.2 Integrals Involving Powers of Trig Functions	413
19.2.1 Powers of sin and/or cos	413
19.2.2 Powers of tan	415
19.2.3 Powers of sec	416
19.2.4 Powers of cot	418
19.2.5 Powers of csc	418
19.2.6 Reduction formulas	419
19.3 Integrals Involving Trig Substitutions	421
19.3.1 Type 1: $\sqrt{a^2 - x^2}$	421
19.3.2 Type 2: $\sqrt{x^2 + a^2}$	423
19.3.3 Type 3: $\sqrt{x^2 - a^2}$	424
19.3.4 Completing the square and trig substitutions	426
19.3.5 Summary of trig substitutions	426
19.3.6 Technicalities of square roots and trig substitutions	427
19.4 Overview of Techniques of Integration	429
20 Improper Integrals: Basic Concepts	431
20.1 Convergence and Divergence	431
20.1.1 Some examples of improper integrals	433
20.1.2 Other blow-up points	435
20.2 Integrals over Unbounded Regions	437
20.3 The Comparison Test (Theory)	439
20.4 The Limit Comparison Test (Theory)	441
20.4.1 Functions asymptotic to each other	441
20.4.2 The statement of the test	443
20.5 The p -test (Theory)	444
20.6 The Absolute Convergence Test	447
21 Improper Integrals: How to Solve Problems	451
21.1 How to Get Started	451
21.1.1 Splitting up the integral	452
21.1.2 How to deal with negative function values	453
21.2 Summary of Integral Tests	454
21.3 Behavior of Common Functions near ∞ and $-\infty$	456
21.3.1 Polynomials and poly-type functions near ∞ and $-\infty$	456
21.3.2 Trig functions near ∞ and $-\infty$	459
21.3.3 Exponentials near ∞ and $-\infty$	461
21.3.4 Logarithms near ∞	465
21.4 Behavior of Common Functions near 0	469

21.4.1 Polynomials and poly-type functions near 0	469
21.4.2 Trig functions near 0	470
21.4.3 Exponentials near 0	472
21.4.4 Logarithms near 0	473
21.4.5 The behavior of more general functions near 0	474
21.5 How to Deal with Problem Spots Not at 0 or ∞	475
22 Sequences and Series: Basic Concepts	477
22.1 Convergence and Divergence of Sequences	477
22.1.1 The connection between sequences and functions	478
22.1.2 Two important sequences	480
22.2 Convergence and Divergence of Series	481
22.2.1 Geometric series (theory)	484
22.3 The n th Term Test (Theory)	486
22.4 Properties of Both Infinite Series and Improper Integrals	487
22.4.1 The comparison test (theory)	487
22.4.2 The limit comparison test (theory)	488
22.4.3 The p -test (theory)	489
22.4.4 The absolute convergence test	490
22.5 New Tests for Series	491
22.5.1 The ratio test (theory)	492
22.5.2 The root test (theory)	493
22.5.3 The integral test (theory)	494
22.5.4 The alternating series test (theory)	497
23 How to Solve Series Problems	501
23.1 How to Evaluate Geometric Series	502
23.2 How to Use the n th Term Test	503
23.3 How to Use the Ratio Test	504
23.4 How to Use the Root Test	508
23.5 How to Use the Integral Test	509
23.6 Comparison Test, Limit Comparison Test, and p -test	510
23.7 How to Deal with Series with Negative Terms	515
24 Taylor Polynomials, Taylor Series, and Power Series	519
24.1 Approximations and Taylor Polynomials	519
24.1.1 Linearization revisited	520
24.1.2 Quadratic approximations	521
24.1.3 Higher-degree approximations	522
24.1.4 Taylor's Theorem	523
24.2 Power Series and Taylor Series	526
24.2.1 Power series in general	527
24.2.2 Taylor series and Maclaurin series	529
24.2.3 Convergence of Taylor series	530
24.3 A Useful Limit	534

25 How to Solve Estimation Problems	535
25.1 Summary of Taylor Polynomials and Series	535
25.2 Finding Taylor Polynomials and Series	537
25.3 Estimation Problems Using the Error Term	540
25.3.1 First example	541
25.3.2 Second example	543
25.3.3 Third example	544
25.3.4 Fourth example	546
25.3.5 Fifth example	547
25.3.6 General techniques for estimating the error term	548
25.4 Another Technique for Estimating the Error	548
26 Taylor and Power Series: How to Solve Problems	551
26.1 Convergence of Power Series	551
26.1.1 Radius of convergence	551
26.1.2 How to find the radius and region of convergence	554
26.2 Getting New Taylor Series from Old Ones	558
26.2.1 Substitution and Taylor series	560
26.2.2 Differentiating Taylor series	562
26.2.3 Integrating Taylor series	563
26.2.4 Adding and subtracting Taylor series	565
26.2.5 Multiplying Taylor series	566
26.2.6 Dividing Taylor series	567
26.3 Using Power and Taylor Series to Find Derivatives	568
26.4 Using Maclaurin Series to Find Limits	570
27 Parametric Equations and Polar Coordinates	575
27.1 Parametric Equations	575
27.1.1 Derivatives of parametric equations	578
27.2 Polar Coordinates	581
27.2.1 Converting to and from polar coordinates	582
27.2.2 Sketching curves in polar coordinates	585
27.2.3 Finding tangents to polar curves	590
27.2.4 Finding areas enclosed by polar curves	591
28 Complex Numbers	595
28.1 The Basics	595
28.1.1 Complex exponentials	598
28.2 The Complex Plane	599
28.2.1 Converting to and from polar form	601
28.3 Taking Large Powers of Complex Numbers	603
28.4 Solving $z^n = w$	604
28.4.1 Some variations	608
28.5 Solving $e^z = w$	610
28.6 Some Trigonometric Series	612

28.7 Euler's Identity and Power Series	615
29 Volumes, Arc Lengths, and Surface Areas	617
29.1 Volumes of Solids of Revolution	617
29.1.1 The disc method	619
29.1.2 The shell method	620
29.1.3 Summary ... and variations	622
29.1.4 Variation 1: regions between a curve and the y -axis	623
29.1.5 Variation 2: regions between two curves	625
29.1.6 Variation 3: axes parallel to the coordinate axes	628
29.2 Volumes of General Solids	631
29.3 Arc Lengths	637
29.3.1 Parametrization and speed	639
29.4 Surface Areas of Solids of Revolution	640
30 Differential Equations	645
30.1 Introduction to Differential Equations	645
30.2 Separable First-order Differential Equations	646
30.3 First-order Linear Equations	648
30.3.1 Why the integrating factor works	652
30.4 Constant-coefficient Differential Equations	653
30.4.1 Solving first-order homogeneous equations	654
30.4.2 Solving second-order homogeneous equations	654
30.4.3 Why the characteristic quadratic method works	655
30.4.4 Nonhomogeneous equations and particular solutions	656
30.4.5 Finding a particular solution	658
30.4.6 Examples of finding particular solutions	660
30.4.7 Resolving conflicts between y_P and y_H	662
30.4.8 Initial value problems (constant-coefficient linear)	663
30.5 Modeling Using Differential Equations	665
Appendix A Limits and Proofs	669
A.1 Formal Definition of a Limit	669
A.1.1 A little game	670
A.1.2 The actual definition	672
A.1.3 Examples of using the definition	672
A.2 Making New Limits from Old Ones	674
A.2.1 Sums and differences of limits—proofs	674
A.2.2 Products of limits—proof	675
A.2.3 Quotients of limits—proof	676
A.2.4 The sandwich principle—proof	678
A.3 Other Varieties of Limits	678
A.3.1 Infinite limits	679
A.3.2 Left-hand and right-hand limits	680
A.3.3 Limits at ∞ and $-\infty$	680

A.3.4 Two examples involving trig	682
A.4 Continuity and Limits	684
A.4.1 Composition of continuous functions	684
A.4.2 Proof of the Intermediate Value Theorem	686
A.4.3 Proof of the Max-Min Theorem	687
A.5 Exponentials and Logarithms Revisited	689
A.6 Differentiation and Limits	691
A.6.1 Constant multiples of functions	691
A.6.2 Sums and differences of functions	691
A.6.3 Proof of the product rule	692
A.6.4 Proof of the quotient rule	693
A.6.5 Proof of the chain rule	693
A.6.6 Proof of the Extreme Value Theorem	694
A.6.7 Proof of Rolle's Theorem	695
A.6.8 Proof of the Mean Value Theorem	695
A.6.9 The error in linearization	696
A.6.10 Derivatives of piecewise-defined functions	697
A.6.11 Proof of l'Hôpital's Rule	698
A.7 Proof of the Taylor Approximation Theorem	700
Appendix B Estimating Integrals	703
B.1 Estimating Integrals Using Strips	703
B.1.1 Evenly spaced partitions	705
B.2 The Trapezoidal Rule	706
B.3 Simpson's Rule	709
B.3.1 Proof of Simpson's rule	710
B.4 The Error in Our Approximations	711
B.4.1 Examples of estimating the error	712
B.4.2 Proof of an error term inequality	714
List of Symbols	717
Index	719