

Detailed Contents

Part 1 Elementary methods, differentiation, complex numbers

1 Standard functions and techniques	3
1.1 Real numbers, powers, inequalities	3
1.2 Coordinates in the plane	6
1.3 Graphs	7
1.4 Functions	12
1.5 Radian measure of angles	16
1.6 Trigonometric functions; properties	17
1.7 Inverse functions	23
1.8 Inverse trigonometric functions	25
1.9 Polar coordinates	28
1.10 Exponential functions; the number e	30
1.11 The logarithmic function	33
1.12 Exponential growth and decay	35
1.13 Hyperbolic functions	36
1.14 Partial fractions	39
1.15 Summation sign: geometric series	43
1.16 Infinite geometric series	45
1.17 Permutations and combinations	46
1.18 The binomial theorem	51
Problems	55
2 Differentiation	61
2.1 The slope of a graph	62
2.2 The derivative: notation and definition	65
2.3 Rates of change	67
2.4 Derivative of x^n ($n = 0, 1, 2, 3, \dots$)	69
2.5 Derivatives of sums: multiplication by constants	70
2.6 Three important limits	72
2.7 Derivatives of $e^x, \sin x, \cos x, \ln x$	74
2.8 A basic table of derivatives	76
2.9 Higher-order derivatives	77
2.10 An interpretation of the second derivative	79
Problems	80
3 Further techniques for differentiation	82
3.1 The product rule	83
3.2 Quotients and reciprocals	85
3.3 The chain rule	86
3.4 Derivative of x^n for any value of n	89
3.5 Functions of $ax + b$	90
3.6 An extension of the chain rule	91
3.7 Logarithmic differentiation	92

3.8	Implicit differentiation	93
3.9	Derivatives of inverse functions	94
3.10	Derivative as a function of a parameter	95
	Problems	98
4	Applications of differentiation	100
4.1	Function notation for derivatives	100
4.2	Maxima and minima	102
4.3	Exceptional cases of maxima and minima	106
4.4	Sketching graphs of functions	108
4.5	Estimating small changes	114
4.6	Numerical solution of equations: Newton's method	116
4.7	The binomial theorem: an alternative proof	120
	Problems	121
5	Taylor series and approximations	124
5.1	The index notation for derivatives of any order	125
5.2	Taylor polynomials	125
5.3	A note on infinite series	128
5.4	Infinite Taylor expansions	130
5.5	Manipulation of Taylor series	132
5.6	Approximations for large values of x	134
5.7	Taylor series about other points	134
5.8	Indeterminate values; l'Hôpital's rule	136
	Problems	138
6	Complex numbers	140
6.1	Definitions and rules	141
6.2	The Argand diagram, modulus, conjugate	144
6.3	Complex numbers in polar coordinates	146
6.4	Complex numbers in exponential form	148
6.5	The general exponential form	151
6.6	Hyperbolic functions	153
6.7	Miscellaneous applications	154
	Problems	156
Part 2 Matrix and vector algebra		
7	Matrix algebra	161
7.1	Matrix definition and notation	161
7.2	Rules of matrix algebra	162
7.3	Special matrices	168
7.4	The inverse matrix	172
	Problems	177
8	Determinants	179
8.1	The determinant of a square matrix	179
8.2	Properties of determinants	182

8.3	The adjoint and inverse matrices	189
	Problems	190
9	Elementary operations with vectors	193
9.1	Displacement along an axis	193
9.2	Displacement vectors in two dimensions	195
9.3	Axes in three dimensions	198
9.4	Vectors in two and three dimensions	198
9.5	Relative velocity	204
9.6	Position vectors and vector equations	206
9.7	Unit vectors and basis vectors	210
9.8	Tangent vector, velocity, and acceleration	212
9.9	Motion in polar coordinates	214
	Problems	216
10	The scalar product	219
10.1	The scalar product of two vectors	219
10.2	The angle between two vectors	220
10.3	Perpendicular vectors	222
10.4	Rotation of axes in two dimensions	223
10.5	Direction cosines	225
10.6	Rotation of axes in three dimensions	226
10.7	Direction ratios and coordinate geometry	229
10.8	Properties of a plane	230
10.9	General equation of a straight line	234
10.10	Forces acting at a point	235
10.11	Tangent vector and curvature in two dimensions	238
	Problems	240
11	Vector product	244
11.1	Vector product	244
11.2	Nature of the vector $p = a \times b$	246
11.3	The scalar triple product	249
11.4	Moment of a force	251
11.5	Vector triple product	255
	Problems	256
12	Linear algebraic equations	259
12.1	Cramer's rule	260
12.2	Elementary row operations	262
12.3	The inverse matrix by Gaussian elimination	265
12.4	Compatible and incompatible sets of equations	267
12.5	Homogeneous sets of equations	271
12.6	Gauss-Seidel iterative method of solution	273
	Problems	275
13	Eigenvalues and eigenvectors	279
13.1	Eigenvalues of a matrix	279
13.2	Eigenvectors	281

13.3	Linear dependence	285
13.4	Diagonalization of a matrix	286
13.5	Powers of matrices	289
13.6	Quadratic forms	292
13.7	Positive-definite matrices	295
13.8	An application to a vibrating system	298
	Problems	301

Part 3 Integration and differential equations

14	Antidifferentiation and area	307
14.1	Reversing differentiation	307
14.2	Constructing a table of antiderivatives	311
14.3	Signed area generated by a graph	314
14.4	Case where the antiderivative is composite	317
	Problems	318
15	The definite and indefinite integral	320
15.1	Signed area as the sum of strips	320
15.2	Numerical illustration of the sum formula	321
15.3	The definite integral and area	323
15.4	The indefinite-integral notation	324
15.5	Integrals unrelated to area	326
15.6	Improper integrals	328
15.7	Integration of complex functions: a new type of integral	331
15.8	The area analogy for a definite integral	333
15.9	Symmetric integrals	333
15.10	Definite integrals having variable limits	336
	Problems	338
16	Applications involving the integral as a sum	341
16.1	Examples of integrals arising from a sum	341
16.2	Geometrical area in polar coordinates	344
16.3	The trapezium rule	346
16.4	Centre of mass, moment of inertia	348
	Problems	353
17	Systematic techniques for integration	356
17.1	Substitution method for $\int f(ax + b) dx$	356
17.2	Substitution method for $\int f(ax^2 + b)x dx$	359
17.3	Substitution method for $\int \cos^m ax \sin^n ax dx$ (m or n odd)	360
17.4	Definite integrals and change of variable	362
17.5	Occasional substitutions	364
17.6	Partial fractions for integration	366
17.7	Integration by parts	368
17.8	Integration by parts: definite integrals	371
17.9	Differentiating with respect to a parameter	373
	Problems	375

18 Unforced linear differential equations with constant coefficients	379
18.1 Differential equations and their solutions	380
18.2 Solving first-order linear unforced equations	382
18.3 Solving second-order linear unforced equations	384
18.4 Complex solutions of the characteristic equation	388
18.5 Initial conditions for second-order equations	391
Problems	393
19 Forced linear differential equations	395
19.1 Particular solutions for standard forcing terms	395
19.2 Harmonic forcing term, by using complex solutions	399
19.3 Particular solutions: exceptional cases	403
19.4 The general solution of forced equations	404
19.5 First-order linear equations with a variable coefficient	407
Problems	411
20 Harmonic functions and the harmonic oscillator	413
20.1 Harmonic oscillations	413
20.2 Phase difference: lead and lag	415
20.3 Physical models of a differential equation	417
20.4 Free oscillations of a linear oscillator	419
20.5 Forced oscillations and transients	420
20.6 Resonance	423
20.7 Nearly linear systems	425
20.8 Stationary and travelling waves	427
20.9 Compound oscillations; beats	431
20.10 Travelling waves; beats	434
20.11 Dispersion; group velocity	436
20.12 The Doppler effect	437
Problems	439
21 Steady forced oscillations: phasors, impedance, transfer functions	442
21.1 Phasors	442
21.2 Algebra of phasors	444
21.3 Phasor diagrams	445
21.4 Phasors and complex impedance	446
21.5 Transfer functions in the frequency domain	451
21.6 Phasors and waves; complex amplitude	453
Problems	458
22 Graphical, numerical, and other aspects of first-order equations	460
22.1 Graphical features of first-order equations	460
22.2 The Euler method for numerical solution	463
22.3 Nonlinear equations of separable type	466
22.4 Differentials and the solution of first-order equations	469
22.5 Change of variable in a differential equation	473
Problems	476

23	Nonlinear differential equations and the phase plane	480
23.1	Autonomous second-order equations	481
23.2	Constructing a phase diagram for (x, \dot{x})	482
23.3	(x, \dot{x}) phase diagrams for other linear equations; stability	486
23.4	The pendulum equation	489
23.5	The general phase plane	491
23.6	Approximate linearization	494
23.7	Classification of linear equilibrium points	496
23.8	Limit cycles	497
23.9	A numerical method for phase paths	499
	Problems	501

Part 4 Transforms and Fourier Series

24	The Laplace transform	505
24.1	The Laplace transform	505
24.2	Laplace transforms of t^n , $e^{\pm t}$, $\sin t$, $\cos t$	506
24.3	Scale rule; shift rule; factors t^n and e^{kt}	508
24.4	Inverting a Laplace transform	512
24.5	Laplace transforms of derivatives	515
24.6	Application to differential equations	516
24.7	The unit function and the delay rule	519
24.8	The division rule for $f(t)/t$	524
	Problems	525
25	Laplace and z transforms: applications	527
25.1	Division by s and integration	527
25.2	The impulse function	530
25.3	Impedance in the s domain	533
25.4	Transfer functions in the s domain	535
25.5	The convolution theorem	541
25.6	General response of a system from its impulsive response	543
25.7	Convolution integral in terms of memory	544
25.8	Discrete systems	545
25.9	The z transform	548
25.10	Behaviour of z transforms in the complex plane	552
25.11	z transforms and difference equations	556
	Problems	558
26	Fourier series	562
26.1	Fourier series for a periodic function	563
26.2	Integrals of periodic functions	564
26.3	Calculating the Fourier coefficients	566
26.4	Examples of Fourier series	569
26.5	Use of symmetry: sine and cosine series	572
26.6	Functions defined on a finite range: half-range series	574
26.7	Spectrum of a periodic function	577
26.8	Obtaining one Fourier series from another	578
26.9	The two-sided Fourier series	579
	Problems	582

27 Fourier transforms	586
27.1 Sine and cosine transforms	587
27.2 The exponential Fourier transform	590
27.3 Short notations: alternative expressions	592
27.4 Fourier transforms of some basic functions	593
27.5 Rules for manipulating transforms	596
27.6 The delta function and periodic functions	599
27.7 Convolution theorem for Fourier transforms	601
27.8 The shah function	605
27.9 Energy in a signal: Rayleigh's theorem	607
27.10 Diffraction from a uniformly radiating strip	608
27.11 General source distribution and the inverse transform	612
27.12 Transforms in radiation problems	613
Problems	618
Part 5 Multivariable calculus	
28 Differentiation of functions of two variables	623
28.1 Depiction of functions of two variables	624
28.2 Partial derivatives	627
28.3 Higher derivatives	629
28.4 Tangent plane and normal to a surface	632
28.5 Maxima, minima, and other stationary points	635
28.6 The method of least squares	638
28.7 Differentiating an integral with respect to a parameter	640
Problems	642
29 Functions of two variables: geometry and formulae	645
29.1 The incremental approximation	645
29.2 Small changes and errors	648
29.3 The derivative in any direction	651
29.4 Implicit differentiation	654
29.5 Normal to a curve	657
29.6 Gradient vector in two dimensions	659
Problems	662
30 Chain rules, restricted maxima, coordinate systems	664
30.1 Chain rule for a single parameter	664
30.2 Restricted maxima and minima: the Lagrange multiplier	667
30.3 Curvilinear coordinates in two dimensions	672
30.4 Orthogonal coordinates	675
30.5 The chain rule for two parameters	676
30.6 The use of differentials	679
Problems	681
31 Functions of any number of variables	683
31.1 The incremental approximation; errors	683
31.2 Implicit differentiation	686

31.3	Chain rules	688
31.4	The gradient vector in three dimensions	688
31.5	Normal to a surface	690
31.6	Equation of the tangent plane	691
31.7	Directional derivative in terms of gradient	692
31.8	Stationary points	696
31.9	The envelope of a family of curves	702
	Problems	704
32	Double integration	708
32.1	Repeated integrals with constant limits	709
32.2	Examples leading to repeated integrals with constant limits	710
32.3	Repeated integrals over non-rectangular regions	713
32.4	Changing the order of integration for non-rectangular regions	715
32.5	Double integrals	717
32.6	Polar coordinates	721
32.7	Separable integrals	724
32.8	General change of variable; the Jacobian determinant	727
	Problems	732
33	Line integrals	735
33.1	Evaluation of line integrals	736
33.2	General line integrals in two and three dimensions	739
33.3	Paths parallel to the axes	743
33.4	Path independence and perfect differentials	744
33.5	Closed paths	746
33.6	Green's theorem	748
33.7	Line integrals and work	750
33.8	Conservative fields	752
33.9	Potential for a conservative field	754
33.10	Single-valuedness of potentials	756
	Problems	759
34	Vector fields: divergence and curl	762
34.1	Vector fields and field lines	762
34.2	Divergence of a vector field	764
34.3	Surface and volume integrals	765
34.4	The divergence theorem; flux of a vector field	770
34.5	Curl of a vector field	773
34.6	Cylindrical polar coordinates	777
34.7	General curvilinear coordinates	779
34.8	Stokes's theorem	781
	Problems	785

Part 6 Discrete mathematics

35	Sets	789
35.1	Notation	789
35.2	Equality, union, and intersection	790

35.3	Venn diagrams Problems	792 799
36	Boolean algebra: logic gates and switching functions	801
36.1	Laws of Boolean algebra	801
36.2	Logic gates and truth tables	803
36.3	Logic networks	805
36.4	The inverse truth-table problem	808
36.5	Switching circuits	809
	Problems	812
37	Graph theory and its applications	814
37.1	Examples of graphs	815
37.2	Definitions and properties of graphs	817
37.3	How many simple graphs are there?	818
37.4	Paths and cycles	820
37.5	Trees	821
37.6	Electrical circuits: the cutset method	823
37.7	Signal-flow graphs	827
37.8	Planar graphs	831
37.9	Further applications	834
	Problems	837
38	Difference equations	842
38.1	Discrete variables	842
38.2	Difference equations: general properties	845
38.3	First-order difference equations and the cobweb	847
38.4	Constant-coefficient linear difference equations	849
38.5	The logistic difference equation	854
	Problems	859

Part 7 Probability and statistics

39	Probability	865
39.1	Sample spaces, events, and probability	866
39.2	Sets and probability	868
39.3	Frequencies and combinations	872
39.4	Conditional probability	875
39.5	Independent events	877
39.6	Total probability	879
39.7	Bayes' theorem	880
	Problems	881
40	Random variables and probability distributions	884
40.1	Probability distributions	885
40.2	The binomial distribution	887
40.3	Expected value and variance	889
40.4	Geometric distribution	891

40.5	Poisson distribution	892
40.6	Other discrete distributions	894
40.7	Continuous random variables and distributions	895
40.8	Mean and variance of continuous random variables	897
40.9	The normal distribution	898
	Problems	901

41 Descriptive statistics

41.1	Representing data	903
41.2	Random samples and sampling distributions	908
41.3	Sample mean and variance, and their estimation	910
41.4	Central limit theorem	911
41.5	Regression	913
	Problems	915

Part 8 Projects

42 Applications projects using symbolic computing

919

42.1	Symbolic computation	919
42.2	Projects	920

Self-tests: Selected answers

931

Answers to selected problems

937

Appendices

948

A	Some algebraical rules	948
B	Trigonometric formulae	949
C	Areas and volumes	951
D	A table of derivatives	952
E	Table of indefinite and definite integrals	953
F	Laplace transforms, inverses, and rules	955
G	Exponential Fourier transforms and rules	956
H	Probability distributions and tables	957
I	Dimensions and units	959

Further reading

961

Index

962