

CONTENTS

PREFACE	
INTRODUCTION	1
Chapter 1. BASIC RESULTS FROM VECTOR ANALYSIS	17
1.1. Introduction	17
1.2. Scalar product, gradient, curl and divergence	17
1.3. Theorem of Stokes, theorem of Gauss and Green's theorems	25
1.4. References	28
Chapter 2. DISCRETE SPECTRAL ANALYSIS	29
2.1. Introduction	29
2.2. The delta pulse and discrete functions	29
2.3. Fourier series of periodic time functions	31
2.4. Fourier integral of transients	36
2.5. Relationship between the discrete property and periodicity	45
2.6. Sampling and aliasing in time and frequency	49
2.7. References	52
Chapter 3. TWO-DIMENSIONAL FOURIER TRANSFORMS	53
3.1. Introduction	53
3.2. Basic theory	53
3.3. Spatial aliasing	56
3.4. Two-dimensional Fourier theory and plane wave analysis	58
3.5. References	60
Chapter 4. WAVE THEORY	61
4.1. Introduction	61
4.2. Derivation of the wave equation	61
4.3. Plane waves and k-f diagrams	76
4.4. Spherical waves and directivity patterns	86
4.5. Cylindrical waves	96

4.6. Angle dependence of reflection coefficients	101
4.7. References	108
Chapter 5. WAVE FIELD EXTRAPOLATION: THE FORWARD PROBLEM	109
5.1. Introduction	109
5.2. Derivation of the Kirchhoff integral	109
5.3. The Rayleigh integral I	113
5.4. The Rayleigh integral II	116
5.5. Forward extrapolation scheme in the space-time domain	125
5.6. Forward extrapolation scheme in the space-fre- quency domain	128
5.7. Forward extrapolation scheme in the wavenumber- frequency domain	131
5.8. References	137
Chapter 6. MODELING BY WAVE FIELD EXTRAPOLATION	139
6.1. Introduction	139
6.2. Modeling of one physical experiment	139
6.3. Focussing of one physical experiment	146
6.4. Modeling of a plane wave response	148
6.5. Modeling with the two-way propagation matrix	150
6.6. Modeling of multi-record data sets	153
6.7. References	165
Chapter 7. WAVE FIELD EXTRAPOLATION: THE INVERSE PROBLEM	167
7.1. Introduction	167
7.2. Upward extrapolation of multi-record data sets in terms of spatial convolution	168
7.3. Downward extrapolation of multi-record data sets in terms of spatial inverse filtering	170
7.4. Kirchhoff-summation approach and matched fil- tering	172
7.5. Downward extrapolation in the presence of noise	175
7.6. Least-squares downward extrapolation in two dimensions	178
7.7. Downward extrapolation of one source gather by inversion of the two-way propagation matrix	182

7.8.	Downward extrapolation of one detector gather by inversion of the two-way propagation matrix	185
7.9.	Downward extrapolation of one source- or receiver gather by combined forward and inverse extrapolation	187
7.10.	Downward extrapolation of plane wave data	188
7.11.	Downward extrapolation of zero-offset data	191
7.12.	Imaging	194
7.13.	References	197
Chapter 8.	MIGRATION IN THE WAVENUMBER-FREQUENCY DOMAIN	199
8.1.	Introduction	199
8.2.	Migration as a mapping procedure to the k_x - k_z domain	200
8.3.	Recursive migration in the k_x - k_z domain	203
8.4.	Migration of plane-wave data in the k_x - k_z domain	206
8.5.	Migration of zero-offset data in the k_x - k_z domain	207
8.6.	References	208
Chapter 9.	SUMMATION APPROACH TO MIGRATION	209
9.1.	Introduction	209
9.2.	Summation method in the space-frequency domain	209
9.3.	Summation method in the space-time domain	214
9.4.	Summation method for plane-wave and zero-offset data	218
9.5.	Practical summation schemes for recursive migration	219
9.6.	Multi-level extrapolation schemes	229
9.7.	References	230
Chapter 10.	FINITE-DIFFERENCE APPROACH TO MIGRATION	231
10.1.	Introduction	231
10.2.	Wave field extrapolation with the Taylor series	232
10.3.	Floating time reference	235
10.4.	Approximate expressions for the spatial derivatives with respect to z	236
10.5.	Approximations of the wave equation for delayed pressure	240
10.6.	Finite-difference migration in the space-frequency domain	241

10.7. Errors in finite-difference migration	245
10.8. Finite-difference schemes in three dimensions	257
10.9. References	259
Chapter 11. COMPARISON BETWEEN THE DIFFERENT APPROACHES TO MIGRATION	261
11.1. Introduction	261
11.2. Review of the seismic model	261
11.3. Review of the inversion philosophy	268
11.4. Taylor series and wave equation	271
11.5. Extrapolation by means of multiplication	272
11.6. Replacement of the multiplication procedure by one-dimensional convolution	273
11.7. Replacement of the multiplication procedure by two-dimensional convolution	274
11.8. Series expansion of the convolution operators	277
11.9. Summary on extrapolation methods	280
11.10. Summary on imaging methods	282
11.11. Possibilities and limitations in practical situations	286
11.12. Some concluding remarks	287
11.13. References	288
Chapter 12. LIMITS OF LATERAL RESOLUTION	289
12.1. Introduction	289
12.2. Ultimate limits of lateral resolution	289
12.3. Lateral resolution in practical situations	294
12.4. Influence of finite apertures	295
12.5. References	302
SUBJECT INDEX	303
APPENDICES	
A. HOOKE'S LAW FOR FLUIDS AND SOLIDS	305
B. LINEAR EQUATIONS FOR COMPRESSIVE WAVES IN HOMOGENEOUS SOLIDS	312
C. WAVE EQUATION FOR INHOMOGENEOUS FLUIDS	320
D. SPATIAL FOURIER TRANSFORMS OF GREEN'S FUNCTIONS IN THE RAYLEIGH INTEGRALS	329
E. SUMMATION OPERATOR FOR SMALL EXTRAPOLATION STEPS	332
F. DIFFERENTIATION IN TERMS OF CONVOLUTION	337