

CONTENTS

PREFACE	xiii
ACKNOWLEDGMENTS	xv
CHAPTER 1 BASICS OF MECHANISMS	1
Introduction	2
Physical Principles	2
Inclined Plane	3
Pulley Systems	3
Screw-Type Jack	4
Levers and Mechanisms	4
Linkages	5
Specialized Mechanisms	9
Gears and Gearing	10
Pulleys and Belts	14
Sprockets and Chains	14
Cam Mechanisms	14
CHAPTER 2 MOTION CONTROL SYSTEMS	21
Motion Control Systems Overview	22
Glossary of Motion Control Terms	28
Mechanical Components for Specialized Motion-Control Systems	29
Servomotors, Stepper Motors, and Actuators for Motion Control	30
Servosystem Feedback Sensors	38
Solenoids and Their Applications	45
CHAPTER 3 INDUSTRIAL ROBOTS	49
Introduction to Robots	50
Industrial Robots	51
Mechanism for Planar Manipulation with Simplified Kinematics	60
Tool-Changing Mechanism for Robot	61
Piezoelectric Motor in Robot Finger Joint	62
Self-Reconfigurable, Two-Arm Manipulator with Bracing	63
Improved Roller and Gear Drives for Robots and Vehicles	64
Glossary of Robotic Terms	65
CHAPTER 4 MOBILE SCIENTIFIC, MILITARY, AND RESEARCH ROBOTS	67
Introduction to Mobile Robots	68
Scientific Mobile Robots	69
Military Mobile Robots	70
Research Mobile Robots	72
Second-Generation Six-Limbed Experimental Robot	76
All-Terrain Vehicle with Self-Righting and Pose Control	77
CHAPTER 5 LINKAGES: DRIVES AND MECHANISMS	79
Four-Bar Linkages and Typical Industrial Applications	80
Seven Linkages for Transport Mechanisms	82
Five Linkages for Straight-Line Motion	85
Six Expanding and Contracting Linkages	87

Four Linkages for Different Motions	88
Nine linkages for Accelerating and Decelerating linear Motions	89
Twelve Linkages for Multiplying Short Motions	91
Four Parallel-Link Mechanisms	93
Seven Stroke Multiplier Linkages	93
Nine Force and Stroke Multiplier Linkages	95
Eighteen Variations of Differential Linkage	97
Four-Bar Space Mechanisms	99
Seven Three-Dimensional Linkage Drives	101
Thirteen Different Toggle Linkage Applications	106
Hinged Links and Torsion Bushings Soft-Start Drives	108
Eight Linkages for Band Clutches and Brakes	109
Design of Crank-and-Rocker Links for Optimum Force Transmission	111
Design of Four-Bar Linkages for Angular Motion	114
Multi-Bar Linkages for Curvilinear Motions	115
Roberts' Law Helps to Design Alternate Four-Bar Linkages	118
Slider-Crank Mechanism	119
CHAPTER 6 GEARS: DEVICES, DRIVES, AND MECHANISMS	121
Gears and Eccentric Disk Provide Quick Indexing	122
Odd-Shaped Planetary Gears Smooth Stop and Go	123
Cycloid Gear Mechanism Controls Pump Stroke	126
Gears Convert Rotary-to-Linear Motion	127
Twin-Motor Planetary Gears Offer Safety and Dual-Speed	127
Eleven Cycloid Gear Mechanisms	128
Five Cardan-Gear Mechanisms	131
Controlled Differential Gear Drives	133
Flexible Face-Gears are Efficient High-Ratio Speed Reducers	134
Rotary Sequencer Gears Turn Coaxially	135
Planetary Gear Systems	136
Noncircular Gears are Balanced for Speed	143
Sheet-Metal Gears, Sprockets, Worms, and Ratchets	
for Light Loads	147
Thirteen Ways Gears and Clutches Can Change Speed Ratios	149
Gear and Clutch Shifting Mechanisms	151
Twinworm Gear Drive Offers Bidirectional Output	153
Elastomeric Gear Bearings Equalize Torque Loads	154
Redundant Gearing in Helicopter Transmits Torque	155
Worm Gear Friction Reduced by Oil Pressure	156
Bevel and Hypoid Gear Design Prevents Undercutting	157
Geared Electromechanical Rotary Joint	158
Geared Speed Reducers Offer One-Way Output	159
Design of Geared Five-Bar Mechanisms	160
Equations for Designing Geared Cycloid Mechanisms	164
Design Curves and Equations for Gear-Slider Mechanisms	167
CHAPTER 7 CAM, GENEVA, AND RATCHET DRIVES AND MECHANISMS	171
Cam-Controlled Planetary Gear System	172
Five Cam-Stroke-Amplifying Mechanisms	173
Cam-Curve-Generating Mechanisms	174
Fifteen Different Cam Mechanisms	180
Ten Special-Function Cams	182
Twenty Geneva Drives	184
Six Modified Geneva Drives	188

Kinematics of External Geneva Wheels	190
Kinematics of Internal Geneva Wheels	193
Star Wheels Challenge Geneva Drives for Indexing	197
Ratchet-Tooth Speed-Change Drive	200
Modified Ratchet Drive	200
Eight Toothless Ratchets	201
Analysis of Ratchet Wheels	202
CHAPTER 8 CLUTCHES AND BRAKES	203
Twelve Clutches with External or Internal Control	204
Spring-Wrapped Clutch Slips at Preset Torque	206
Controlled-Slip Expands Spring Clutch Applications	208
Spring Bands Improve Overrunning Clutch	209
Slip and Bidirectional Clutches Combine to Control Torque	210
Walking Pressure Plate Delivers Constant Torque	211
Seven Overrunning Clutches	212
One-Way Clutch has Spring-Loaded Pins and Sprags	213
Roller Clutch provides Two Output Speeds	213
Seven Overriding Clutches	214
Ten Applications for Overrunning Clutches	216
Eight Sprag Clutch Applications	218
Six Small Clutches Perform Precise Tasks	220
Twelve Different Station Clutches	222
Twelve Applications for Electromagnetic Clutches and Brakes	225
Roller Locking Mechanism Contains Two Overrunning Clutches	227
CHAPTER 9 LATCHING, FASTENING, AND CLAMPING DEVICES AND MECHANISMS	229
Sixteen Latch, Toggle, and Trigger Devices	230
Fourteen Snap-Action Devices	232
Remote Controlled Latch	236
Toggle Fastener Inserts, Locks, and Releases Easily	237
Grapple Frees Loads Automatically	237
Quick-Release Lock Pin has a Ball Detent	238
Automatic Brake Locks Hoist when Driving Torque Ceases	238
Lift-Tong Mechanism Firmly Grips Objects	239
Perpendicular-Force Latch	239
Two Quick-Release Mechanisms	240
Ring Springs Clamp Platform Elevator into Position	241
Cammed Jaws in Hydraulic Cylinder Grip Sheet Metal	241
Quick-Acting Clamps for Machines and Fixtures	242
Nine Friction Clamping Devices	244
Detents for Stopping Mechanical Movements	246
Twelve Clamping Methods for Aligning Adjustable Parts	248
Spring-Loaded Chucks and Holding Fixtures	250
CHAPTER 10 CHAIN AND BELT DEVICES AND MECHANISMS	251
Twelve Variable-Speed Belt and Chain Drives	252
Belts and Chains are Available	
in Many different Forms	255
Change Center Distance without Altering Speed Ratio	259
Motor Mount Pivots to Control Belt Tension	259
Ten Roller Chains and their Adaptations	260
Twelve Applications for Roller Chain	262
Six Mechanisms for Reducing Pulsations in Chain Drives	266

CHAPTER 11 SPRING AND SCREW DEVICES AND MECHANISMS	269
Flat Springs in Mechanisms	270
Twelve Ways to Use Metal Springs	272
Seven Overriding Spring Mechanisms for Low-Torque Drives	274
Six Spring Motors and Associated Mechanisms	276
Twelve Air Spring Applications	278
Novel Applications for Different Springs	280
Applications for Belleville Springs	281
Vibration Control with Spring Linkage	282
Twenty Screw Devices	283
Ten Applications for Screw Mechanisms	285
Seven Special Screw Arrangements	287
Fourteen Spring and Screw adjusting Devices	288
CHAPTER 12 SHAFT COUPLINGS AND CONNECTIONS	289
Four Couplings for Parallel Shafts	290
Links and Disks Couple Offset Shafts	291
Disk-and-Link Couplings Simplify Torque Transmission	292
Interlocking Space-Frames Flex as they Transmit Shaft Torque	293
Coupling with Off-Center Pins Connects Misaligned Shafts	295
Universal Joint Transmits Torque 45° At Constant Speed	296
Ten Universal Shaft Couplings	297
Nineteen Methods for Coupling Rotating Shafts	299
Five Different Pin-and-Link Couplings	303
Ten Different Splined Connections	304
Fourteen Ways to Fasten Hubs to Shafts	306
CHAPTER 13 MOTION-SPECIFIC DEVICES, MECHANISMS, AND MACHINES	309
Timing Belts, Four-Bar linkage Team Up for Smooth Indexing	310
Ten Indexing and Intermittent Mechanisms	312
Twenty-Seven Rotary-to-Reciprocating Motion and Dwell Mechanisms	314
Five Friction Mechanisms for Intermittent Rotary Motion	320
Nine Different Ball Slides for Linear Motion	322
Ball-Bearing Screws Convert Rotary to Linear Motion	324
Nineteen Arrangements for Changing Linear Motion	325
Five Adjustable-Output Mechanisms	329
Four Different Reversing Mechanisms	331
Ten Mechanical Computing Mechanisms	332
Seven Different Mechanical Power Amplifiers	336
Forty-Three Variable-Speed Drives and Transmissions	339
Ten Variable-Speed Friction Drives	351
Four Drives Convert Oscillating Motion to One-Way Rotation	353
Operating Principles of Liquid, Semisolid, and Vacuum Pumps	355
Twelve Different Rotary-Pump Actions	359
CHAPTER 14 PACKAGING, CONVEYING, HANDLING, AND SAFETY MECHANISMS AND MACHINES	361
Fifteen Devices that Sort, Feed, or Weigh	362
Seven Cutting Mechanisms	366
Two Flipping Mechanisms	368
One Vibrating Mechanism	368
Seven Basic Parts Selectors	369
Eleven Parts-Handling Mechanisms	370
Seven Automatic-Feed Mechanisms	372

Fifteen Conveyor Systems for Production Machines	375
Seven Traversing Mechanisms	
for Winding Machines	379
Vacuum Pickup for Positioning Pills	381
Machine Applies Labels from Stacks or Rollers	381
Twenty High-Speed Machines for Applying Adhesives	382
Twenty-Four Automatic Mechanisms for Stopping	
Unsafe Machines	388
Six Automatic Electrical Circuits for	
Stopping Textile Machines	394
Six Automatic Mechanisms for Assuring	
Safe Machine Operation	396
CHAPTER 15 TORQUE, SPEED, TENSION, AND LIMIT CONTROL SYSTEMS	399
Applications of the Differential Winch to Control Systems	400
Six Ways to Prevent Reverse Rotation	402
Caliper Brakes Keep Paper Tension in Web Presses	403
Control System for Paper Cutting	403
Warning System Prevents Overloading of Boom	404
Lever System Monitors Cable Tension	404
Eight Torque-Limiters Protect Light-Duty Drives	405
Thirteen Limiters Prevent Overloading	406
Seven Ways to Limit Shaft Rotation	409
Mechanical Systems for Controlling Tension and Speed	409
Nine Drives for Controlling Tension	415
Limit Switches in Machinery	418
Nine Automatic Speed Governors	422
Eight Speed Control Devices for Mechanisms	424
CHAPTER 16 INSTRUMENTS AND CONTROLS: PNEUMATIC, HYDRAULIC, ELECTRIC, AND ELECTRONIC	425
Twenty-Four Mechanisms Actuated by Pneumatic or Hydraulic Cylinders	426
Foot-Controlled Braking System	428
Fifteen Tasks for Pneumatic Power	428
Ten Applications for Metal Diaphragms and Capsules	430
Nine Differential Transformer Sensors	432
High-Speed Electronic Counters	434
Applications for Permanent Magnets	435
Nine Electrically Driven Hammers	438
Sixteen Thermostatic Instruments and Controls	440
Eight Temperature-Regulating Controls	444
Seven Photoelectric Controls	446
Liquid Level Indicators and Controllers	448
Applications for Explosive-Cartridge Devices	450
Centrifugal, Pneumatic, Hydraulic, and Electric Governors	452
CHAPTER 17 COMPUTER-AIDED DESIGN CONCEPTS	455
Introduction to Computer-Aided Design	456
CHAPTER 18 RAPID PROTOTYPING	461
Rapid Prototyping Focuses on Building	
Functional Parts	462
Rapid Prototype Processes	462
Rapid Prototyping Steps	463
Commercial Rapid Prototyping Choices	463

CHAPTER 19 NEW DIRECTIONS IN MECHANICAL ENGINEERING**473**

The Role of Microtechnology in Mechanical Engineering	474
Micromachines Open a New Frontier for Machine Design	476
Multilevel Fabrication Permits more Complex and Functional MEMS	480
Gallery of MEMS Electron-Microscope Images	480
MEMS Chips Become Integrated Microcontrol Systems	484
Alternative Materials for Building MEMS	486
LIGA: An Alternative Method for Making Microminiature Parts	487
Miniature Multispeed Transmissions for Small Motors	488
The Role of Nanotechnology in Mechanical Engineering	489
What are Carbon Nanotubes?	491
Nanoactuators Based on Electrostatic Forces on Dielectrics	492

INDEX**495**