

Contents

<i>Preface</i>	<i>page</i> ix
<i>List of Contributors</i>	xi
1 Fundamentals and Challenges	1
1.1 Aims and Coverage	1
1.2 Background	3
1.3 Governing Equations	6
1.3.1 Chemical Reaction Rate	8
1.3.2 Mixture Fraction	9
1.3.3 Spray Combustion	10
1.4 Levels of Simulation	11
1.4.1 DNS	11
1.4.2 RANS	11
1.4.3 LES	12
1.5 Equations of Turbulent Flow	13
1.6 Combustion Regimes	14
1.7 Modelling Strategies	16
1.7.1 Turbulent Transport	17
1.7.2 Reaction-Rate Closures	20
1.7.3 Models for LES	27
1.8 Data for Model Validation	31
REFERENCES	33
2 Modelling Methods	41
2.1 Laminar Flamelets and the Bray, Moss, and Libby Model	41
2.1.1 The BML Model	42
2.1.2 Application to Stagnating Flows	48
2.1.3 Gradient and Counter-Gradient Scalar Transport	50
2.1.4 Laminar Flamelets	52
2.1.5 A Simple Laminar Flamelet Model	54
2.1.6 Conclusions	60

2.2	Flame Surface Density and the <i>G</i> Equation	60
2.2.1	Flame Surface Density	61
2.2.2	The <i>G</i> Equation for Laminar and Corrugated Turbulent Flames	64
2.2.3	Detailed Chemistry Modelling with FSD	68
2.2.4	FSD as a PDF Ingredient	71
2.2.5	Conclusion	74
2.3	Scalar-Dissipation-Rate Approach	74
2.3.1	Interlinks among SDR, FSD, and Mean Reaction Rate	76
2.3.2	Transport Equation for the SDR	77
2.3.3	A Situation of Reference – Non-Reactive Scalars	78
2.3.4	SDR in Premixed Flames and Its Modelling	81
2.3.5	Algebraic Models	97
2.3.6	Predictions of Measurable Quantities	100
2.3.7	LES Modelling for the SDR Approach	101
2.3.8	Final Remarks	102
2.4	Transported Probability Density Function Methods for Premixed Turbulent Flames	102
2.4.1	Alternative PDF Transport Equations	105
2.4.2	Closures for the Velocity Field	107
2.4.3	Closures for the Scalar Dissipation Rate	108
2.4.4	Reaction and Diffusion Terms	109
2.4.5	Solution Methods	110
2.4.6	Freely Propagating Premixed Turbulent Flames	111
2.4.7	The Impact of Molecular-Mixing Terms	113
2.4.8	Closure of Pressure Terms	114
2.4.9	Premixed Flames at High Reynolds Numbers	121
2.4.10	Partially Premixed Flames	124
2.4.11	Scalar Transport at High Reynolds Numbers	126
2.4.12	Conclusions	130
	Appendix 2.A	132
	Appendix 2.B	133
	Appendix 2.C	134
	Appendix 2.D	135
	REFERENCES	135
3	Combustion Instabilities	151
3.1	Instabilities in Flames	151
3.1.1	Flame Instabilities	152
3.1.2	Turbulent Burning, Extinctions, Relights, and Acoustic Waves	166
3.1.3	Auto-Ignitive Burning	168
3.2	Control Strategies for Combustion Instabilities	173
3.2.1	Energy and Combustion Oscillations	174
3.2.2	Passive Control	176
3.2.3	Tuned Passive Control	187
3.2.4	Active Control	189

3.3	Simulation of Thermoacoustic Instability	202
3.3.1	Basic Equations and Levels of Description	202
3.3.2	LES of Compressible Reacting Flows	206
3.3.3	3D Helmholtz Solver	215
3.3.4	Upstream–Downstream Acoustic Conditions	219
3.3.5	Application to an Annular Combustor	221
3.3.6	Conclusions	229
	REFERENCES	229
4	Lean Flames in Practice	244
4.1	Application of Lean Flames in Internal Combustion Engines	244
4.1.1	Legislation for Fuel Economy and for Emissions	245
4.1.2	Lean-Burn Combustion Concepts for IC Engines	256
4.1.3	Role of Experiments for Lean-Burn Combustion in IC Engines	304
4.1.4	Concluding Remarks	307
4.2	Application of Lean Flames in Aero Gas Turbines	309
4.2.1	Background to the Design of Current Aero Gas Turbine Combustors	312
4.2.2	Scoping the Low-Emissions Combustor Design Problem	313
4.2.3	Emissions Requirements	314
4.2.4	Engine Design Trend and Effect of Engine Cycle on Emissions	317
4.2.5	History of Emissions Research to C.E. 2000	318
4.2.6	Operability	321
4.2.7	Performance Compromise after Concept Demonstration	323
4.2.8	Lean-Burn Options	324
4.2.9	Conclusions	331
4.3	Application of Lean Flames in Stationary Gas Turbines	335
4.3.1	Common Combustor Configurations	336
4.3.2	Fuels	338
4.3.3	Water Injection	339
4.3.4	Emissions Regulations	340
4.3.5	Available NO_x Control Technologies	342
4.3.6	Lean Blowoff	345
4.3.7	Combustion Instability	345
4.3.8	Flashback	348
4.3.9	Auto-Ignition	348
4.3.10	External Aerodynamics	349
4.3.11	Combustion Research for Industrial Gas Turbines	349
4.3.12	Future Trends and Research Emphasis	350
	REFERENCES	351
5	Future Directions	365
5.1	Utilization of Hot Burnt Gas for Better Control of Combustion and Emissions	365
5.1.1	Axially Staged Lean-Mixture Injection	367

5.1.2	Application of the Concept to Gas Turbine Combustors	374
5.1.3	Numerical Simulation towards Design Optimization	375
5.2	Future Directions and Applications of Lean Premixed Combustion	378
5.2.1	LPP Combustors	378
5.2.2	Reliable Models that Can Predict Lift-Off and Blowout Limits of Flames in Co-Flows or Cross-Flows	383
5.2.3	New Technology in Measurement Techniques	386
5.2.4	Unresolved Fundamental Issues	390
5.2.5	Summary	395
5.3	Future Directions in Modelling	396
5.3.1	Modelling Requirements	396
5.3.2	Assessment of Models	398
5.3.3	Future Directions	400
	REFERENCES	401
	<i>Nomenclature</i>	407
	<i>Index</i>	415