
CONTENTS

Preface	ix
1 THE PHENOMENON OF FLUID TURBULENCE	1
1-1 What is Turbulence?	3
1-2 Ubiquity of Turbulence	4
1-3 Why Does Turbulence Occur?	6
1-4 Closing Remarks	8
References	17
2 SCALARS, VECTORS, AND TENSORS	19
2-1 Introduction	19
2-2 Rotation of Coordinate Systems	19
2-3 Vectors (First-Order Tensors)	21
2-4 Second-Order Tensors	22
2-4-1 Definition and Simple Examples	22
2-4-2 Stress and the Quotient Law	23
2-4-3 Kronecker Delta, a Tensor	24
2-5 Third- and Higher-Order Tensors	25
2-5-1 Vorticity and the Alternating Tensor	25
2-5-2 A More General Quotient Law	26
2-6 Zero-Order Tensors and Contraction	27
2-7 Outer and Inner Products of Tensors of Higher Order	28
2-8 Subscripted Quantities That Are Not Tensors	28
2-9 Closing Remarks	29
References	29

3	BASIC CONTINUUM EQUATIONS	31
3-1	Justification of the Use of a Continuum Approach for Turbulence	31
3-2	Equation of Continuity (Conservation of Mass)	32
3-3	Navier-Stokes Equations (Conservation of Momentum)	34
3-3-1	Stress Tensor	34
3-3-2	Equations of Motion	38
3-3-3	Dimensionless Form of Constant-Property Fluid-Flow Equations and Dimensionless Correlation of Friction-Factor Data	41
3-4	Heat Transfer or Energy Equation (Conservation of Energy)	42
3-4-1	Dimensionless Form of Constant-Property Energy Equation and Dimensionless Correlation of Heat-Transfer Data	44
3-5	Rule for Obtaining Additional Dimensionless Parameters as a System Becomes More Complex	45
3-6	Closing Remarks	47
	References	48
4	AVERAGES, REYNOLDS DECOMPOSITION, AND THE CLOSURE PROBLEM	49
4-1	Average Values and Their Properties	49
4-1-1	Ergodic Theory and the Randomness of Turbulence	51
4-1-2	Remarks	51
4-1-3	Properties of Averaged Values	51
4-2	Equations in Terms of Mean and Fluctuating Components	52
4-3	Averaged Equations	55
4-3-1	Equations for Mean Flow and Mean Temperature	55
4-3-2	Simple Closures of the Equations for Mean Flow and Temperature	57
4-3-3	One-Point Correlation Equations	91
4-3-4	Two-Point Correlation Equations	98
4-4	Closing Remarks	104
	References	106
5	FOURIER ANALYSIS, SPECTRAL FORM OF THE CONTINUUM EQUATIONS, AND HOMOGENEOUS TURBULENCE	109
5-1	Fourier Analysis of the Two-Point Averaged Continuum Equations	110
5-1-1	Analysis of Two-Point Averaged Quantities	110
5-1-2	Analysis of the Two-Point Correlation Equations	112
5-2	Fourier Analysis of the Unaveraged (Instantaneous) Continuum Equations	116
5-2-1	Analysis of Instantaneous Quantities	116
5-2-2	Analysis of Instantaneous Continuum Equations	118
5-3	Homogeneous Turbulence without Mean Velocity or Temperature (Scalar) Gradients	122
5-3-1	Basic Equations	122
5-3-2	Illustrative Solutions of the Basic Equations	131
5-4	Homogeneous Turbulence and Heat Transfer with Uniform Mean-Velocity or -Temperature Gradients	220

5-4-1	Basic Equations	220
5-4-2	Cases for Which Mean Gradients Are Large or the Turbulence Is Weak	222
5-4-3	Uniformly and Steadily Sheared Homogeneous Turbulence If Triple Correlations May Be Important	355
5-5	Closing Remarks	365
	References	365
6	TURBULENCE, NONLINEAR DYNAMICS, AND DETERMINISTIC CHAOS	373
6-1	Low-Order Nonlinear System	374
6-2	Basic Equations and a Long-Term Turbulent Solution with Steady Forcing	376
6-3	Some Computer Animations of a Turbulent Flow	382
6-4	Some Turbulent and Nonturbulent Navier-Stokes Flows	383
6-4-1	Time Series	385
6-4-2	Phase Portraits	386
6-4-3	Poincaré Sections	392
6-4-4	Liapunov Exponent	394
6-4-5	Ergodic Theory Interpretations	398
6-4-6	Power Spectra	399
6-4-7	Dimensions of the Attractors	400
6-5	Closing Remarks	402
	References	403
	AFTERWORD	405
	INDEX	407