

Contents

<i>Preface</i>	xiii
<i>Foreword</i>	xv
Chapter 1: Basic Concepts	1
Heat Energy and Heat Transfer; Importance of Heat Transfer; Modes of Heat Transfer; Thermodynamics and Heat Transfer—Basic Difference; Dimension and Unit; Mechanism of Heat Transfer by Conduction; Thermal Conductivity of Materials; Convective Heat Transfer Coefficient—Newton's Law of Cooling; The Nature of Thermal Radiation; The Overall Heat Transfer Coefficient; Evaporation is a Cooling Process; Insulating Materials—Types and Characteristics; Semiconductors and Superconductors	
Chapter 2: Steady State Conduction – One Dimension	31
The General Heat Conduction Equation for an Isotropic Solid with Constant Thermal Conductivity; One-dimensional Heat Flow; Thermal Diffusivity and its Significance; Temperature Distribution in 1-D Systems, A Plane Wall, A Cylindrical Shell—Expression for Temperature Distribution, Spherical and Parallelpipeded Shells—Expression for Temperature Distribution; Composite Surfaces; Heat Transfer Rate through a Composite Wall; The Equivalent Thermal Conductivity; The Significance of Biot Number; The Concept of Thermal Contact Resistance; An Expression for the Heat Transfer Rate through a Composite Cylindrical System; Concept of Critical Thickness of Insulation; Expression for Critical Thickness of Insulation for a Cylindrical Pipe; An Expression for the Critical Thickness of Insulation for a Spherical Shell; Systems with Internal Heat Generation; An Expression for the Temperature Distribution in a Slab with Heat Generation under Steady State Condition; Expression for Temperature Distribution in a Cylinder with Heat Generation when	

the Cylinder is (i) Hollow and (ii) Solid; An Expression for Temperature Distribution in a Sphere with Internal Heat Generation when the Sphere is (i) Solid and (ii) Hollow; The Utility of Extended Surfaces; An Expression for the Temperature Distribution in a Fin of Uniform Cross-section; Significance of Fins having Insulated Tips; Fin Efficiency and Fin Effectiveness; Extended Surfaces do not always Increase the Heat Transfer Rate; An Expression for Temperature Distribution for an Annular Fin of Uniform Thickness; An Expression for Temperature Distribution for a Straight Fin of Triangular Profile

Chapter 3: Unsteady State Conduction Heat Transfer

95

Transient State Systems—Defined; Biot and Fourier Modulus—Definition and Significance; Lumped Capacity System—Necessary Physical Assumptions; An Expression for Evaluating the Temperature Variation in a Solid Using Lumped Capacity Analysis; Response Time of a Temperature Measuring Instrument; A Semi-infinite Solid—Definition; Error Function—Definition; An Expression for the Quantity of Heat Energy Added to a Semi-infinite Solid during a Given Time Period 't'; An Expression for the Temperature-Time History for Transient Heat Flow in a Large Plane Wall of Thickness '2L'; Heisler Charts—Their Significance in Solving Transient Heat Conduction Problems; One-dimensional Transient Solution Extended for Solving Two and Three-dimensional Problems; The Phenomenon of Temperature Distribution within a Semi-infinite Solid Subject to Periodic Variation in Temperature

Chapter 4: Two Dimensional Steady State Conduction

130

Governing Equation for Steady State Conduction; Analytical Solution—Separation of Variable Technique; Graphical Analysis—Shape Factor; The Utility of Analogical Method; Numerical Methods; Conducting Rod Analogy; Conducting Rod Analogy for Different Boundary Conditions; Transient Numerical Methods—Usefulness

Chapter 5: Heat Transfer by Natural Convection

156

Convection Heat Transfer—Requirements; Convection Heat Transfer Mechanism; Free and Forced Convection; Basic Difference between Laminar and Turbulent Flow; Formation of a Boundary Layer; Thermal Boundary Layer; Dimensionless Parameters and their Significance; Evaluation of Convective Heat Transfer Coefficient; Modified Grashof Number; Free Convection from Horizontal Cylinders—Empirical Relations; Film Convection—Defined; Mechanism of Free Convection from Horizontal Plates; Horizontal and Inclined Flat Plates with Uniform

Heat Flux—Empirical Relations; Simplified Free Convection Relations for Air; Heat Transfer by Free Convection in a Limited Volume; Heat Transfer from Inclined Surfaces; Heat Transfer by Natural Convection from Rotating Cylinders and Disks

Chapter 6: Laminar Flow Forced Convection Heat Transfer 188

Forced Convection Heat Transfer Principles; Methods for determining Heat Transfer Coefficient; Method of Dimensional Analysis; Principles of Reynolds Analogy; Analytical Evaluation of 'h' for Laminar Flow over a Flat Plate—Assumptions; Derivation of the Equation of Continuity—Conservation of Mass; Derivation of Equation of Motion—Two-Dimensional Laminar Flow over a Flat Plate; Derivation of the Energy Equation—Two-Dimensional Laminar Flow over a Flat Plate; Significance of Prandtl Number; Solution of the Momentum and Energy Equation; Derivation of the Integral Momentum Equation—Its Use and Solution; Derivation of Integral Boundary-layer Energy Equation—Assumptions and Solution; Empirical Relation for Flat Plates having (a) Unheated Initial Length and (b) Constant Heat Flux; Laminar Flow through Tubes—Entry Length and Fully Developed Flow; An Expression for Pressure Loss in Hagen-Poiseuille Flow; The Bulk Temperature—Definition; Fully Developed Temperature Profile—Effect of Temperature Difference; Energy Analysis for Flow through a Tube—Evaluation of 'h'; Methods to Improve 'h' in Laminar Flow through Tubes; Laminar flow through Concentric Tube Annulus—Evaluation of 'h'

Chapter 7: Turbulent Flow Forced Convection Heat Transfer 229

Laminar and Turbulent Flow—Basic Difference; Turbulent Flow—Basic Definitions; Shear Stress and Eddy Viscosity—Defined; Turbulent Boundary Layer formation over a Plane Surface; Estimating Turbulent Boundary Layer Thickness—One-seventh Power Law; Turbulent Prandtl Number—Defined; Fluid Friction—Heat Transfer Analogy in Turbulent Flow; Turbulent Flow Heat Transfer with Constant Heat Flux; Turbulent Flow in Tubes—Velocity Profile; Turbulent Flow through Tubes—Reynolds Analogy, Evaluation of 'h'; Effect of Surface Irregularities; Heat Transfer with Liquid Metals—Merits and Demerits; Liquid Metals Flowing over Flat Plate—Peclet Number; Liquid Metals flowing inside Tubes—Empirical Relations; Combined Free and Forced Convection Heat Transfer—Mechanism

Chapter 8: Forced Convection over Exterior Surfaces 255

Flow Considerations in Cross-flow over a Single Cylinder; Effect of Reynolds Number on Local Nusselt Number Variation; Empirical Correlations for 'h' in Cross-flow over Circular and

x Contents

Non-Circular Cylinders; Empirical Correlation for the Evaluation of 'h' in Flow over a Sphere; Heat Transfer from Tube Bundles in Cross-flow—Its Significance; Heat Transfer in High Speed Flow—Aerodynamic Heating; Adiabatic Wall Temperature and Recovery Factor—Defined; Evaluation of 'h' in High Speed Flow – Reynolds Analogy

Chapter 9: Thermal Radiation

275

Essentials of Heat Transfer by Radiation; Physical Mechanism of Thermal Radiation; Basic Terminology—Definitions; Monochromatic Emissive Power of a Black Body—Planck's Distribution Law; Wien's Displacement Law; Derivation of Stefan-Boltzmann Law from Planck's Law of Radiation; Statement and Proof of Kirchhoff's Law of Radiation; The Concept of a Black Body; Intensity of Radiation; An Expression for Obtaining I, the Intensity of Radiation; Wavelength Dependent Characteristics—Solar Radiation; Greenhouse Effect; Characteristics of Real Surfaces; Radiation Energy Exchange between Two Black Bodies Placed in a Non-absorbing Medium—the Shape Factor; The Reciprocity Theorem; Shape Factor Characteristics; Heat Exchange between Gray Bodies—Radiation Network; Electrical Network for Two Gray Bodies; Electrical Network for Three Gray Bodies; Electrical Network for a System Consisting of Four Gray Surfaces; Radiation—Convection System; Heat Transfer Coefficient for Radiation; Gas Radiation; Absorptivity of Gases; Radiant Heat Exchange between Two Infinite Parallel Planes separated by a Gray Gas; Mean Beam Length; Heat Exchange between Gas Volume and Black Enclosure;

Chapter 10: Heat Exchangers

332

Heat Exchangers: Regenerators and Recuperators; Classification of Heat Exchangers; Expression for Log Mean Temperature Difference—Its Characteristics; Special Operating Conditions for Heat Exchangers; LMTD for Cross-flow Heat Exchangers; Fouling Factors in Heat Exchangers; The Overall Heat Transfer Coefficient; Heat Exchangers Effectiveness—Useful Parameters; Effectiveness—NTU Relations; Heat Exchanger Design—Important Factors; Increasing the Heat Transfer Coefficient

Chapter 11: Heat Transfer with Change of Phase

368

Condensation and Boiling; Condensation—Filmwise and Dropwise; Filmwise Condensation Mechanism on a Vertical Plane Surface—Assumption; An Expression for the Liquid Film Thickness and the Heat Transfer Coefficient in Laminar Filmwise Condensation on a Vertical Plate; An Expression for 'h' in Turbulent Liquid Film; Condensation of Superheated Vapour; The

Effect of Non-condensable Gases and the Vapour Velocity; Improvement of 'h' in Filmwise Condensation; Filmwise Condensation on Horizontal Cylinders—Empirical Relations; Condensation Inside Tubes—Empirical Relation; Dropwise Condensation—Merits and Demerits; Principles of Boiling Heat Transfer; Regimes of Boiling; Boiling Curve—Operating Constraints; Factors Affecting Nucleate Boiling; Empirical Correlations; Forced Convection Boiling Mechanism; Conduction with Phase Change; The Working of a Heat Pipe

Chapter 12: Mass Transfer

401

Mass Transfer and its Applications; Different Modes of Mass Transfer; Dalton's Law of Partial Pressure; Molar Density, Mass Density, Mass Fraction and Mole Fraction; Mass Average and Molar Average Velocities and Different Types of Fluxes; Fick's Law of Diffusion; Diffusion in Gases, Liquids and Solids; The Equivalence of Diffusion Coefficient; Main Points of Fick's Law of Diffusion; An Expression for Isothermal Evaporation of Water Vapour into Stagnant Air from a Surface; An Expression for Steady State Diffusion through a Plane Membrane; Expression for Transient Diffusion in a Semi-infinite Medium; The Phenomenon of Drying of Solids; Convective Mass Transfer Coefficient; Dimensionless Numbers used in Mass Transfer; An Expression for the Convective Mass Transfer Coefficient for Laminar Flow over a Flat Plate; Expressions for Convective Mass Transfer Coefficient for Flow through Tubes, Flow over Spheres and Cylinders; Simultaneous Heat and Mass Transfer Process

Index

433