

CONTENTS

Preface xiii
Acknowledgments xvi

Part I Muscle Architecture and Mechanics	1
■ Chapter 1 Muscle Architecture	3
1.1 Muscle Fascicles and Their Arrangements	8
1.1.1 Parallel Fibered and Fusiform Muscles	10
1.1.2 Pennate Muscles	10
1.1.2.1 Planar Models of Pennate Muscles	12
1.1.2.2 Pennation in Three Dimensions	17
1.1.3 Convergent and Circular Muscles	19
1.2 Muscle Fascicle Curvature: Frenet Frames	20
1.3 Fiber Architecture in the Fascicles	25
1.4 Muscle as a Fiber-Reinforced Composite	30
1.5 Fiber, Fascicle, and Muscle Length: Length-Length Ratios	33
1.5.1 Fiber and Fascicle Length	33
1.5.2 Length-Length Ratios	34
1.6 Muscle Path: Muscle Centroids	37
1.6.1 Straight-Line Representation of Muscle Path	38
1.6.2 Centroid Model of Muscle Path	39
1.6.3 Curved and Wrapping Muscles	41
1.6.4 Twisted Muscles	47
1.6.5 Muscles Attaching to More Than Two Bones	48
1.7 Cross-Sectional Area, Physiological and Anatomical	49
1.8 Muscle Attachment Area	56
1.9 Summary	62
1.10 Questions for Review	64
1.11 Literature List	65
■ Chapter 2 Properties of Tendons and Passive Muscles	69
2.1 Biomechanics of Tendons and Aponeuroses	72
2.1.1 Elastic Behavior	72

2.1.1.1 Stress–Strain Relations	74
2.1.1.1.1 Stress–Strain Relations in the Toe Region	76
2.1.1.1.2 Stress–Strain Relations in the Linear Region	78
2.1.1.2 Tendon Forces	80
2.1.1.3 Tension and Elongation in Tendons and Aponeuroses	81
2.1.1.4 Constitutive Equations for Tendons and Ligaments	85
2.1.2 Viscoelastic Behavior of Tendons	86
2.1.2.1 Basic Concepts of Viscoelasticity	86
2.1.2.2 Viscoelastic Properties of Tendons	90
2.1.2.2.1 Computational Models of the Tendons	90
2.1.2.2.2 Factors Affecting Mechanical Properties of the Tendons	91
2.1.3 Tendon Interaction With Surrounding Tissues	92
2.1.3.1 Intertendinous Shear Force and Lateral Force Transfer	92
2.1.3.2 Interfinger Connection Matrices	95
2.1.3.3 Gliding Resistance Between the Tendons and Surrounding Tissues	98
2.1.3.4 Tendon Wrapping	99
2.1.3.5 Bowstringing	103
2.1.3.6 Tendon Properties and Muscle Function	105
2.1.3.7 Musculotendinous Architectural Indices	107
2.2 Mechanical Properties of Passive Muscles	108
2.2.1 Muscle Tone: Equitonometry	109
2.2.2 Mechanical Properties of Relaxed Muscles	111
2.2.2.1 Elastic Properties	111
2.2.2.2 Viscoelastic Properties of Passive Muscles: Passive Mechanical Resistance in Joints	114
2.3 On Joint Flexibility	117
2.4 Summary	120
2.5 Questions for Review	124
2.6 Literature List	125
■ Chapter 3 Mechanics of Active Muscle	131
3.1 Muscle Force Production and Transmission	131
3.1.1 Experimental Methods	132
3.1.2 Transition From Rest to Activity	132

3.1.2.1 Muscle Active State	135
3.1.2.2 Force Development in Humans: Rate of Force Development	137
3.1.3 Transition From Activity to Rest: Muscle Relaxation	140
3.1.4 Constancy of the Muscle Volume	143
3.1.5 Force Transmission and Internal Deformations (Strain)	146
3.1.5.1 Force Transmission in Muscle Fibers	146
3.1.5.2 Force Transmission in Muscles: Summation of Muscle Fiber Forces	149
3.1.5.2.1 <i>Parallel-Fibered and Fusiform Muscles</i>	149
3.1.5.2.1.1 Nonuniform Shortening of Muscle Fibers	149
3.1.5.2.1.2 Nonlinear Summation of Fiber Forces	153
3.1.5.2.2 <i>Pennate Muscles</i>	153
3.1.5.2.2.1 Force Transmission	154
3.1.5.2.2.2 Speed Transmission: Architectural Gear Ratio	155
3.1.6 Intramuscular Stress and Pressure	159
3.1.6.1 Specific Muscle Force	159
3.1.6.2 Stress Tensors	161
3.1.6.3 Intramuscular Fluid Pressure	163
3.1.6.3.1 <i>Hydrostatic and Osmotic Pressure</i>	163
3.1.6.3.2 <i>Factors Affecting Intramuscular Pressure: Application of the Laplace Law</i>	165
3.1.6.3.3 <i>Biological Function of Intramuscular Pressure: The Compartment Syndrome</i>	167
3.2 Functional Relations	170
3.2.1 Force–Length Relations	170
3.2.1.1 Force–Length Curves	170
3.2.1.2 Mechanisms Behind the Active Force–Length Curve	174
3.2.1.3 Problem of Muscle Stability	177
3.2.1.4 Submaximal Force–Length Curve	179
3.2.1.5 Muscle Lengths in the Body: Expressed Sections of the Force–Length Curve	181
3.2.2 Force–Velocity Relations	186
3.2.2.1 A Piece of History: Muscle Viscosity Theory and Heat Production	186
3.2.2.2 Hill’s Force–Velocity Curve	190

3.2.2.3 Other Types of the Force–Velocity Curves	193
3.2.2.3.1 Force–Velocity Relations in Single Movement	193
3.2.2.3.2 Nonparametric Force–Velocity Relations	196
3.2.2.4 Mathematical Description of the Force–Velocity Curve: The Hill Characteristic Equation	198
3.2.2.5 Power–Velocity Relations	200
3.2.3 Force–Length–Velocity Relations	202
3.3 History Effects in Muscle Mechanics	203
3.3.1 Force Depression After Muscle Shortening	203
3.3.2 Effects of Muscle Release: Quick-Release and Controlled-Release Methods: Series Muscle Components	205
3.4 Summary	208
3.5 Questions for Review	213
3.6 Literature List	215
■ Chapter 4 Muscles as Force and Energy Absorbers	
Muscle Models	223
4.1 Muscle Mechanical Behavior During Stretch	225
4.1.1 Dynamic Force Enhancement	226
4.1.1.1 Force–Velocity Relation for Lengthening Muscle	227
4.1.1.2 Give Effects	228
4.1.2 Residual Force Enhancement	229
4.2 Muscle Shortening After Stretch	231
4.2.1 Work and Power During Shortening After Stretch	231
4.2.2 Energy Consumption During Stretch and Efficiency of the Muscle Shortening After Stretch	233
4.3 Dissipation of Energy	235
4.4 Mechanical Muscle Models	237
4.4.1 Hill-Type Model	238
4.4.2 Model Scaling	240
4.5 Summary	242
4.6 Questions for Review	244
4.7 Literature List	245

Part II Muscles in the Body	249
■ Chapter 5 From Muscle Forces to Joint Moments	251
5.1 Force Transmission: From Muscle to Bone	252
5.1.1 From Muscle to Tendon	252
5.1.2 From Tendon to Bone	255
5.1.3 Tendon Elasticity and Isometric Force–Length Relation	258
5.2 Force Transmission via Soft Tissue Skeleton (Fascia)	261
5.2.1 Structure of Fascia	261
5.2.2 Muscle–Tendon–Fascia Attachments	263
5.2.3 Fascia as Soft Tissue Skeleton (Ectoskeleton)	264
5.2.3.1 Plantar Fascia and the Windlass Mechanism	265
5.2.3.2 Fascia Lata and Iliotibial Tract	267
5.3 Muscle Moment Arms	268
5.3.1 Muscle Moment Arm Vectors and Their Components	269
5.3.1.1 Moment Arms as Vectors	269
5.3.1.2 Muscle Moment Arms About Rotation Axes	272
5.3.1.3 Muscle Moment Arms About Anatomical Axes: Muscle Functions at a Joint	274
5.3.1.4 Moment Arms of Muscles With Curved Paths: Quadriceps Moment Arm	280
5.3.1.5 Moment Arms of Multijoint Muscles: Paradoxical Muscle Action	283
5.3.2 Methods for Determination of Muscle Moment Arms	285
5.3.2.1 Geometric Methods	285
5.3.2.1.1 <i>Anatomical Geometric Methods</i>	286
5.3.2.1.1.1 Planar Geometric Models	286
5.3.2.1.1.2 Three-Dimensional Geometric Models	290
5.3.2.1.2 <i>Imaging Geometric Methods</i>	291
5.3.2.2 Functional Methods	293
5.3.2.2.1 <i>Tendon Excursion Method (Kinematic Method)</i>	294
5.3.2.2.2 <i>Load Application Method (Static Method)</i>	299
5.3.3 Factors Affecting Muscle Moment Arm	301
5.3.3.1 Moment Arm as a Function of Joint Angles	301
5.3.3.2 Moment Arm as a Function of Exerted Muscle Force	305
5.3.3.3 Scaling of Moment Arms	307

5.3.4 Transformation of Muscle Forces to Joint Moments: Muscle Jacobian	311
5.4 Summary	313
5.5 Questions for Review	316
5.6 Literature List	318
■ Chapter 6 Two-Joint Muscles in Human Motion 325	
6.1 Two-Joint Muscles: A Special Case of Multifunctional Muscles	325
6.1.1 Functional Features of Two-Joint Muscles	326
6.1.2 Anatomical and Morphological Features of Two-Joint Muscles	328
6.2 Functional Roles of Two-Joint Muscles	331
6.2.1 Kinetic Analysis of Two-Joint Muscles: Lombard's Paradox	331
6.2.2 Kinematic Analysis of Two-Joint Muscles: Solution of Lombard's Paradox	336
6.3 Mechanical Energy Transfer and Saving by Two-Joint Muscles	343
6.3.1 Tendon Action of Two-Joint Muscles	343
6.3.1.1 Illustrative Examples of Tendon Action of Two-Joint Muscles	343
6.3.1.2 Methods of Energy Transfer Estimation	350
6.3.1.2.1 <i>Energy Generated by Joint Moment and Muscles at a Joint</i>	350
6.3.1.2.2 <i>Work Done by a Two-Joint Muscle at the Adjacent Joint</i>	353
6.3.1.3 Tendon Action and Jumping Performance	356
6.3.2 Saving Mechanical Energy by Two-Joint Muscles	357
6.4 Summary	361
6.5 Questions for Review	364
6.6 Literature List	366
■ Chapter 7 Eccentric Muscle Action in Human Motion 369	
7.1 Joint Power and Work as Measures of Eccentric Muscle Action	370
7.1.1 Negative Power and Work at a Joint	370

7.1.2 Total Negative Power and Work in Several Joints	372
7.1.3 Negative Power of Center of Mass Motion	372
7.1.4 Two Ways of Mechanical Energy Dissipation: Softness of Landing	372
7.2 Negative Work in Selected Activities	374
7.2.1 Walking	375
7.2.2 Stair Descent and Ascent	377
7.2.3 Level, Downhill, and Uphill Running	378
7.2.4 Landing	381
7.3 Joint Moments During Eccentric Actions	383
7.3.1 Maximal Joint Moments During Eccentric Actions	383
7.3.2 Force Changes During and After Stretch	386
7.3.2.1 Dynamic Force Enhancement	387
7.3.2.2 Short-Range Stiffness	389
7.3.2.3 Decay of Dynamic Force Enhancement	391
7.3.3 Residual Force Enhancement in Humans	392
7.4 Muscle Activity During Eccentric Actions	394
7.4.1 Surface Electromyographic Activity During Eccentric Actions	395
7.4.2 Motor Unit Activity During Eccentric Actions	396
7.4.3 Electromechanical Delay	397
7.5 Physiological Cost of Eccentric Action	398
7.5.1 Oxygen Consumption During Eccentric and Concentric Exercise	398
7.5.2 Fatigue and Perceived Exertion During Eccentric Action	400
7.5.3 Muscle Soreness After Eccentric Exercise	401
7.6 Reversible Muscle Action: Stretch–Shortening Cycle	402
7.6.1 Enhancement of Positive Work and Power Production	404
7.6.2 Mechanisms of the Performance Enhancement in the Stretch–Shortening Cycle	407
7.6.3 Efficiency of Positive Work in Stretch–Shortening Cycle	411
7.7 Summary	416
7.8 Questions for Review	420
7.9 Literature List	422

■ Chapter 8 Muscle Coordination in Human Motion 429**8.1 Kinematic Redundancy and Kinematic Invariant Characteristics of Limb Movements 430**

- 8.1.1 Straight-Line Limb Endpoint Trajectory 434
- 8.1.2 Bell-Shaped Velocity Profile 437
- 8.1.3 Power Law 440
- 8.1.4 Fitts' Law 444
- 8.1.5 Principle of Least Action 446

8.2 Kinetic Invariant Characteristics of Limb Movements 447

- 8.2.1 Elbow–Shoulder Joint
 - Moment Covariation During Arm Reaching 448
- 8.2.2 Minimum Joint Moment Change 449
- 8.2.3 Orientation and Shape
 - of the Arm Apparent Stiffness Ellipses 451

8.3 Muscle Redundancy 455

- 8.3.1 Sources of Muscle Redundancy 455
- 8.3.2 Invariant Features of Muscle Activity Patterns 457

8.4 The Distribution Problem 460

- 8.4.1 Static Optimization 460
 - 8.4.1.1 Problem Formulation 460
 - 8.4.1.2 Cost Functions 461
 - 8.4.1.3 Accuracy of the Static Optimization Methods:
How Well Do the Methods Work? 464
- 8.4.2 Dynamic Optimization 467
 - 8.4.2.1 Basic Concepts 467
 - 8.4.2.2 Forward Dynamics Problem 468
- 8.4.3 Inverse Optimization 472
- 8.4.4 On Optimization Methods
 - in Human Biomechanics and Motor Control 476

8.5 Summary 478**8.6 Questions for Review 482****8.7 Literature List 483**

Glossary 491

Index 511

About the Authors 519