

CONTENTS

FOREWORD.....	9
1 Scope	11
2 Normative references	11
3 Terms and definitions	12
4 General principles for the application of surge arresters	21
5 Surge arrester fundamentals and applications issues	22
5.1 Evolution of surge protection equipment	22
5.2 Different types and designs and their electrical and mechanical characteristics	23
5.2.1 General	23
5.2.2 Metal-oxide arresters without gaps according to IEC 60099-4	24
5.2.3 Metal-oxide surge arresters with internal series gaps according to IEC 60099-6	34
5.2.4 Externally gapped line arresters (EGLA) according to IEC 60099-8	36
5.2.5 Application considerations	39
6 Insulation coordination and surge arrester applications	52
6.1 General.....	52
6.2 Insulation coordination overview	52
6.2.1 General	52
6.2.2 IEC insulation coordination procedure	53
6.2.3 Overvoltages	53
6.2.4 Line insulation coordination: Arrester Application Practices	59
6.2.5 Substation insulation coordination: Arrester application practices	64
6.2.6 Insulation coordination studies	68
6.3 Selection of arresters	70
6.3.1 General	70
6.3.2 General procedure for the selection of surge arresters	70
6.3.3 Selection of line surge arresters, LSA	84
6.3.4 Selection of arresters for cable protection	93
6.3.5 Selection of arresters for distribution systems – special attention	95
6.3.6 Application and coordination of disconnectors	96
6.3.7 Selection of UHV arresters	98
6.4 Standard and special service conditions	99
6.4.1 Standard service conditions	99
6.4.2 Special service conditions	99
7 Surge arresters for special applications	103
7.1 Surge arresters for transformer neutrals	103
7.1.1 General	103
7.1.2 Surge arresters for fully insulated transformer neutrals	103
7.1.3 Surge arresters for neutrals of transformers with non-uniform insulation	103
7.2 Surge arresters between phases	104
7.2.1 General	104
7.2.2 6-arrester arrangement	104
7.2.3 4-arrester (Neptune) arrangement	104
7.3 Surge arresters for rotating machines	105
7.4 Surge arresters in parallel	106

7.4.1	General	106
7.4.2	Combining different designs of arresters	107
7.5	Surge arresters for capacitor switching	107
7.6	Surge arresters for series capacitor banks	109
8	Asset management of surge arresters	110
8.1	General	110
8.2	Managing surge arresters in a power grid	110
8.2.1	Asset database	110
8.2.2	Technical specifications	110
8.2.3	Strategic spares	110
8.2.4	Transportation and storage	111
8.2.5	Commissioning	111
8.3	Maintenance	111
8.3.1	General	111
8.3.2	Polluted arrester housing	112
8.3.3	Coating of arrester housings	112
8.3.4	Inspection of disconnectors on surge arresters	112
8.3.5	Line surge arresters	112
8.4	Performance and diagnostic tools	112
8.5	End of life	113
8.5.1	General	113
8.5.2	GIS arresters	113
8.6	Disposal and recycling	113
Annex A (informative)	Determination of temporary overvoltages due to earth faults	114
Annex B (informative)	Current practice	118
Annex C (informative)	Arrester modelling techniques for studies involving insulation coordination and energy requirements	119
C.1	Arrester models for impulse simulations	119
C.2	Application to insulation coordination studies	120
C.3	Summary of proposed arrester models to be used for impulse applications	120
Annex D (informative)	Diagnostic indicators of metal-oxide surge arresters in service	122
D.1	General	122
D.1.1	Overview	122
D.1.2	Fault indicators	122
D.1.3	Disconnectors	122
D.1.4	Surge counters	122
D.1.5	Monitoring spark gaps	123
D.1.6	Temperature measurements	123
D.1.7	Leakage current measurements of gapless metal-oxide arresters	123
D.2	Measurement of the total leakage current	128
D.3	Measurement of the resistive leakage current or the power loss	129
D.3.1	General	129
D.3.2	Method A1 – Using the applied voltage signal as a reference	129
D.3.3	Method A2 – Compensating the capacitive component using a voltage signal	130
D.3.4	Method A3 – Compensating the capacitive component without using a voltage signal	131
D.3.5	Method A4 – Capacitive compensation by combining the leakage current of the three phases	131

D.3.6	Method B1 – Third order harmonic analysis	132
D.3.7	Method B2 – Third order harmonic analysis with compensation for harmonics in the voltage	133
D.3.8	Method B3 – First order harmonic analysis	133
D.3.9	Method C – Direct determination of the power losses	133
D.4	Leakage current information from the arrester manufacturer	133
D.5	Summary of diagnostic methods	135
Annex E (informative)	Typical data needed from arrester manufacturers for proper selection of surge arresters	136
Annex F (informative)	Typical maximum residual voltages for metal-oxide arresters without gaps according to IEC 60099-4	137
Annex G (informative)	Steepness reduction of incoming surge with additional line terminal surge capacitance	138
G.1	General	138
G.2	Steepness reduction factor	138
G.3	Equivalent capacitance associated with incoming surge fronts	140
G.3.1	General	140
G.3.2	Examples of incoming surge steepness change, f_s , using typical 550 kV & 245 kV circuit parameters	141
G.3.3	Change in coordination withstand voltage, U_{cw} , with steepness reduction, f_s	142
G.4	EMTP & capacitor charging models for steepness change comparisons at line open terminal	142
G.5	Typical steepness ($S_0 = 1000 \text{ kV}/\mu\text{s}$), change comparisons with C_0 & C_s	143
G.6	Faster steepness (2000 $\text{kV}/\mu\text{s}$), change comparisons with C_0 & C_s	145
Annex H (informative)	Comparison of the former energy classification system based on line discharge classes and the present classification system based on thermal energy ratings for operating duty tests and repetitive charge transfer ratings for repetitive single event energies	147
H.1	General	147
H.2	Examples	150
Annex I (informative)	Estimation of arrester cumulative charges and energies during line switching	155
I.1	Simplified method of estimating arrester line switching energies	155
I.1.1	Introduction	155
I.1.2	Simplified method calculation steps	156
I.1.3	Typical line surge impedances with bundled conductors	158
I.1.4	Prospective switching surge overvoltages	158
I.1.5	Use of IEC 60099-4:2009 to obtain values for surge impedance and prospective surge voltages	159
I.2	Example of charge and energy calculated using line discharge parameters	160
I.3	Arrester line switching energy examples	164
I.3.1	General	164
I.3.2	Case 1 – 145 kV	167
I.3.3	Case 2 – 242 kV	167
I.3.4	Case 3 – 362 kV	167
I.3.5	Case 4 – 420 kV	168
I.3.6	Case 5 – 550 kV	168
Annex J (informative)	End of life and replacement of old gapped SiC-arresters	180
J.1	Overview	180
J.2	Design and operation of SiC-arresters	180

J.3 Failure causes and aging phenomena	180
J.3.1 General	180
J.3.2 Sealing problems	180
J.3.3 Equalization of internal and external pressure and atmosphere	181
J.3.4 Gap electrode erosion	181
J.3.5 Ageing of grading components	182
J.3.6 Changed system conditions	182
J.3.7 Increased pollution levels	182
J.4 Possibility to check the status of the arresters	182
J.5 Advantages of planning replacements ahead	182
J.5.1 General	182
J.5.2 Improved reliability	183
J.5.3 Cost advantages	183
J.5.4 Increased safety requirements	183
J.6 Replacement issues	183
J.6.1 General	183
J.6.2 Establishing replacement priority	183
J.6.3 Selection of MO arresters for replacement installations	184
Bibliography	185

Figure 1 – Example of GIS arresters of three mechanical/one electrical column (middle) and one column (left) design and current path of the three mechanical/one electrical column design (right)	29
Figure 2 – Typical deadfront arrester	30
Figure 3 – Internally gapped metal-oxide surge arrester designs	35
Figure 4 – Components of an EGLA acc. to IEC 60099-8	36
Figure 5 – Typical arrangement of a 420 kV arrester	41
Figure 6 – Examples of UHV and HV arresters with grading and corona rings	42
Figure 7 – Same type of arrester mounted on a pedestal (left), suspended from an earthed steel structure (middle) or suspended from a line conductor (right)	43
Figure 8 – Installations without earth-mat (distribution systems)	44
Figure 9 – Installations with earth-mat (high-voltage substations)	45
Figure 10 – Definition of mechanical loads according to IEC 60099-4:2014	47
Figure 11 – Distribution arrester with disconnector and insulating bracket	48
Figure 12 – Examples of good and poor connection principles for distribution arresters	50
Figure 13 – Typical voltages and duration example for differently earthed systems	54
Figure 14 – Typical phase-to-earth overvoltages encountered in power systems	55
Figure 15 – Arrester voltage-current characteristics	56
Figure 16 – Direct strike to a phase conductor with LSA	61
Figure 17 – Strike to a shield wire or tower with LSA	62
Figure 18 – Typical procedure for a surge arrester insulation coordination study	69
Figure 19 – Flow diagrams for standard selection of surge arrester	73
Figure 20 – Examples of arrester TOV capability	74
Figure 21 – Flow diagram for the selection of NGLA	87
Figure 22 – Flow diagram for the selection of EGLA	91
Figure 23 – Common neutral configurations	96

Figure 24 – Typical configurations for arresters connected phase-to-phase and phase-to-ground	105
Figure A.1 – Earth fault factor k on a base of X_0/X_1 , for $R_1/X_1 = R_1 = 0$	114
Figure A.2 – Relationship between R_0/X_1 and X_0/X_1 for constant values of earth fault factor k where $R_1 = 0$	115
Figure A.3 – Relationship between R_0/X_1 and X_0/X_1 for constant values of earth fault factor k where $R_1 = 0,5 X_1$	115
Figure A.4 – Relationship between R_0/X_1 and X_0/X_1 for constant values of earth fault factor k where $R_1 = X_1$	116
Figure A.5 – Relationship between R_0/X_1 and X_0/X_1 for constant values of earth fault factor k where $R_1 = 2X_1$	116
Figure C.1 – Schematic sketch of a typical arrester installation	119
Figure C.2 – Increase in residual voltage as function of virtual current front time	120
Figure C.3 – Arrester model for insulation coordination studies – fast- front overvoltages and preliminary calculation (Option 1)	121
Figure C.4 – Arrester model for insulation coordination studies – fast- front overvoltages and preliminary calculation (Option 2)	121
Figure C.5 – Arrester model for insulation coordination studies – slow-front overvoltages	121
Figure D.1 – Typical leakage current of a non-linear metal-oxide resistor in laboratory conditions	124
Figure D.2 – Typical leakage currents of arresters in service conditions	125
Figure D.3 – Typical voltage-current characteristics for non-linear metal-oxide resistors	126
Figure D.4 – Typical normalized voltage dependence at $+20^{\circ}\text{C}$	126
Figure D.5 – Typical normalized temperature dependence at U_C	127
Figure D.6 – Influence on total leakage current by increase in resistive leakage current	128
Figure D.7 – Measured voltage and leakage current and calculated resistive and capacitive currents ($V = 6,3 \text{ kV r.m.s.}$)	130
Figure D.8 – Remaining current after compensation by capacitive current at U_C	131
Figure D.9 – Error in the evaluation of the leakage current third harmonic for different phase angles of system voltage third harmonic, considering various capacitances and voltage-current characteristics of non-linear metal-oxide resistors	132
Figure D.10 – Typical information for conversion to "standard" operating voltage conditions	134
Figure D.11 – Typical information for conversion to "standard" ambient temperature conditions	134
Figure G.1 – Surge voltage waveforms at various distances from strike location (0,0 km) due to corona	139
Figure G.2 – Case 1: EMTP Model: Thevenin equivalent source, line (Z_c) & substation bus (Z_c) & Cap(C_S)	142
Figure G.3 – Case 2: Capacitor Voltage charge via line Z : $u(t) = 2 \times U_{\text{surge}} \times (1 - \exp[-t/(Z \times C)])$	143
Figure G.4 – EMTP model	143
Figure G.5 – Simulated surge voltages at the line-substation bus interface	144
Figure G.6 – Simulated Surge Voltages at the Transformer	145
Figure G.7 – EMTP model	145
Figure G.8 – Simulated surge voltages at the line-substation bus interface	146
Figure G.9 – Simulated surge voltages at the transformer	146

Figure H.1 – Specific energy in kJ per kV rating dependant on the ratio of switching impulse residual voltage (U_a) to the r.m.s. value of the rated voltage U_r of the arrester	148
Figure I.1 – Simple network used for Arrester Line Discharge Calculation and Testing according to IEC 60099-4:2009	155
Figure I.2 – Linearized arrester equation in the typical line switching current range (voltage values shown are for a 372 kV rated arrester used on a 420 kV system)	156
Figure I.3 – Graphical illustration of linearized line switching condition and arrester characteristic	157
Figure I.4 – Range of 2 % slow-front overvoltages at the receiving end due to line energization and re-energization	159
Figure I.5 – Arrester class 2 & 3 voltages calculated by EMTP calculations: U_{ps2} and U_{ps3} ($V \times 10^5$)	162
Figure I.6 – Class 2 & 3 arrester currents calculated by EMTP studies: I_{ps2} and I_{ps3} (A)	162
Figure I.7 – Arrester Class 2 & 3 cumulative charges calculated by EMTP simulation: Q_{rs2} and Q_{rs3} (C)	163
Figure I.8 – Arrester Class 2 & 3 cumulative absorbed energies calculated by EMTP simulation: W_{s2} and W_{s3} (kJ/kV U_r)	163
Figure I.9 – Typical Line Reclosing Computer Simulation Network	164
Figure I.10 – Typical 550 kV Reclose Switching Overvoltage Profile along 480 km Line	165
Figure I.11 – IEC LD based charge transfer, Q_{rs} with varying arrester protective ratios	166
Figure I.12 – IEC LD based switching energy, W_{th} with varying arrester protective ratios	166
Figure I.13 – U_{ps} for 145 kV system simulation ($V \times 10^5$)	170
Figure I.14 – I_{ps} for 145 kV system simulation (A)	170
Figure I.15 – 1 Cumulative charge (Q_{rs}) for 145 kV system simulation (C)	171
Figure I.16 – Cumulative energy (W_{th}) for 145 kV system simulation (kJ/kV U_r)	171
Figure I.17 – U_{ps} for 245 kV system simulation ($V \times 10^5$)	172
Figure I.18 – I_{ps} for 245 kV system simulation (A)	172
Figure I.19 – Cumulative charge (Q_{rs}) for 245 kV system simulation (C)	173
Figure I.20 – Cumulative energy (W_{th}) for 245 kV system simulation (kJ/kV U_r)	173
Figure I.21 – U_{ps} for 362 kV system simulation ($V \times 10^5$)	174
Figure I.22 – I_{ps} for 362 kV system simulation (A)	174
Figure I.23 – Cumulative charge (Q_{rs}) for 362 kV system simulation (C)	175
Figure I.24 – Cumulative energy (W_{th}) for 362 kV system simulation (kJ/kV U_r)	175
Figure I.25 – U_{ps} for 420 kV system simulation ($V \times 10^5$)	176
Figure I.26 – I_{ps} for 420 kV system simulation (A)	176
Figure I.27 – Cumulative charge (Q_{rs}) for 420 kV system simulation (C)	177
Figure I.28 – Cumulative energy (W_{th}) for 420 kV system simulation (kJ/kV U_r)	177
Figure I.29 – U_{ps} for 550 kV system simulation ($V \times 10^5$)	178
Figure I.30 – I_{ps} for 550 kV system simulation (A)	178
Figure I.31 – Cumulative charge (Q_{rs}) for 550 kV system simulation (C)	179
Figure I.32 – Cumulative energy (W_{th}) for 550 kV system simulation (kJ/kV U_r)	179
Figure J.1 – Internal SiC-arrester stack	181
Table 1 – Minimum mechanical requirements (for porcelain-housed arresters)	46

Table 2 – Arrester classification	78
Table 3 – Definition of factor A in formulas (14 and 15) for various overhead lines	82
Table 4 – Examples for protective zones calculated by formula (16) for open-air substations	83
Table 5 – Example of the condition for calculating lightning current duty of EGLA in 77 kV transmission lines	90
Table 6 – Probability of insulator flashover in Formula (18)	93
Table D.1 – Summary of diagnostic methods	135
Table D.2 – Properties of on-site leakage current measurement methods	135
Table E.1 – Arrester data needed for the selection of surge arresters	136
Table F.1 – Residual voltages for 20 000 A and 10 000 A arresters in per unit of rated voltage	137
Table F.2 – Residual voltages for 5 000 A, and 2 500 A arresters in per unit of rated voltage	137
Table G.1 – C_S impact on steepness ratio f_S and steepness S_n	141
Table G.2 – Change in coordination withstand voltage, U_{CW}	142
Table H.1 – Peak currents for switching impulse residual voltage test	147
Table H.2 – Parameters for the line discharge test on 20 000 A and 10 000 A arresters	148
Table H.3 – Comparison of the classification system according to IEC 60099-4:2009 and to IEC 6099-4 2014	149
Table I.1 – Typical Arrester Switching (U_{ps} vs I_{ps}) Characteristics	156
Table I.2 – Typical line surge impedances (Z_S) with single and bundled conductors	158
Table I.3 – Line Parameters Prescribed by IEC 60099-4:2009 Line Discharge Class Tests	159
Table I.4 – Line surge impedances and prospective surge voltages derived from line discharge tests parameters of IEC 60099-4:2009 for different system voltages and arrester ratings	160
Table I.5 – Comparison of energy and charge calculated by simplified method with values calculated by EMTP simulation – Base parameters from Table I.4, used for simplified method and for EMTP simulation	161
Table I.6 – Comparison of energy and charge calculated by simplified method with values calculated by EMTP simulation – Calculations using simplified method	161
Table I.7 – Comparison of energy and charge calculated by simplified method with values calculated by EMTP simulation – I.5.(c) Results from EMTP studies	161
Table I.8 – Results of calculations using the different methods described for different system voltages and arrester selection	169