
Contents

<i>Foreword</i>	xix
<i>Preface</i>	xxi
<i>Acknowledgements</i>	xxv
<i>Authors</i>	xxvii
1 Durability performance of concrete structures	1
1.1 <i>What Is Durability?</i> 1	
1.2 <i>Deterioration Mechanisms of Concrete Structures</i> 1	
1.2.1 <i>Carbonation-Induced Steel Corrosion</i> 2	
1.2.2 <i>Chloride-Induced Steel Corrosion</i> 2	
1.2.3 <i>External Sulphate Attack</i> 3	
1.2.4 <i>Alkali-Silica Reaction</i> 3	
1.2.5 <i>Freezing and Thawing</i> 4	
1.3 <i>Deterioration Process of Concrete Structures</i> 5	
1.4 <i>The Costs of Lack of Durability</i> 7	
1.5 <i>Economical, Ecological and Social Impacts of Durability</i> 8	
1.6 <i>Durability Design: The Classical Prescriptive Approach</i> 9	
1.6.1 <i>Compressive Strength as Durability Indicator</i> 10	
1.6.2 <i>Water/Cement Ratio as Durability Indicator</i> 12	
1.6.3 <i>Cement Content as Durability Indicator</i> 14	
1.6.4 <i>Cover Thickness as Durability Indicator</i> 14	
1.7 <i>Durability Design: The Performance Approach</i> 15	
1.7.1 <i>The “Durability Test” Question</i> 15	
1.7.2 <i>Canadian Standards</i> 16	
1.7.3 <i>Argentine and Spanish Codes</i> 16	
1.7.4 <i>Japanese Architectural Code</i> 17	
1.7.5 <i>Portuguese Standards</i> 18	
1.7.6 <i>South African Standards</i> 19	
1.7.7 <i>Swiss Standards</i> 19	

1.8	Concrete Permeability as “Durability Indicator”	21
1.9	Beyond 50 Years: Modelling	22
	References	22
2	Permeability as key concrete property	27
2.1	Foundations of Permeation Laws	27
2.2	Relation between Permeability and Pore Structure of Concrete	28
2.3	Permeability as Key Concrete Property	28
2.3.1	Permeability for Liquids’ Containment	29
2.3.1.1	ACI Low Permeability Concrete	29
2.3.1.2	Dams	29
2.3.1.3	Pervious Concrete	30
2.3.1.4	Liquid Gas Containers	31
2.3.2	Permeability for Gas Containment	32
2.3.2.1	Evacuated Tunnels for High-Speed Trains	32
2.3.2.2	Underground Gas “Batteries”	32
2.3.3	Permeability for Radiation Containment	33
2.3.3.1	Radon Gas	33
2.3.3.2	Nuclear Waste Disposal Containers	34
2.4	Permeability and Durability	36
	References	37
3	Theory: concrete microstructure and transport of matter	41
3.1	Cement Hydration	41
3.1.1	Main Hydration Reactions and Resulting Changes	41
3.1.2	Hydrothermal Conditions for Hydration (Curing)	42
3.2	Microstructure of Hardened Concrete	43
3.2.1	Overview	43
3.2.2	Microstructure of Hardened Cement Paste	45
3.2.3	Interfacial Transition Zone	48
3.2.4	Pore Structure of Hardened Concrete	49
3.2.5	Binding	51
3.3	Water in the Pores of Hardened Concrete	51
3.4	Mechanisms of Transport of Matter through Concrete	52
3.4.1	Diffusion: Fick’s Laws	52
3.4.2	Migration: Nernst-Planck Equation	54
3.5	Permeability	56
3.5.1	Laminar Flow of Newtonian Fluids. Hagen-Poiseuille Law	56
3.5.2	Water-Permeability: Darcy’s Law	59

3.5.3	<i>Permeation of Liquids through Cracks</i>	60
3.5.4	<i>Hagen-Poiseuille-Darcy Law for Gases</i>	60
3.5.5	<i>Relation between Permeability to Gases and Liquids</i>	61
3.6	<i>Knudsen and Molecular Gas Flow: Klinkenberg Effect</i>	62
3.7	<i>Capillary Suction and Water Vapour Diffusion</i>	67
3.7.1	<i>Capillary Suction: A Special Case of Water-Permeability</i>	67
3.7.2	<i>Water Vapour Diffusion</i>	69
3.8	<i>Transport Parameters and Pore Structure</i>	70
3.8.1	<i>Relationship between Transport Parameters and Pore Structure</i>	70
3.8.2	<i>Permeability Predictions: Theory vs Experiments</i>	72
3.8.2.1	<i>Gas- and Water-Permeability vs Pore Structure</i>	72
3.8.2.2	<i>Water Sorptivity vs Pore Structure</i>	73
3.9	<i>Theoretical Relationship between Transport Parameters</i>	75
	<i>References</i>	76

4	Test methods to measure permeability of concrete	81
4.1	<i>Water-Permeability</i>	81
4.1.1	<i>Laboratory Water-Permeability Tests</i>	82
4.1.1.1	<i>Steady-State Flow Test</i>	82
4.1.1.2	<i>Non Steady-State Flow Test: Water-Penetration under Pressure</i>	83
4.1.2	<i>Site Water-Permeability Tests</i>	85
4.1.2.1	<i>Germann Test</i>	85
4.1.2.2	<i>Autoclam System</i>	85
4.1.2.3	<i>Field Water-Permeability</i>	86
4.2	<i>Sorptivity: Special Case of Water-Permeability</i>	87
4.2.1	<i>Laboratory Sorptivity Tests</i>	88
4.2.2	<i>Site Sorptivity Tests</i>	91
4.2.2.1	<i>ISAT</i>	91
4.2.2.2	<i>Karsten Tube</i>	93
4.2.2.3	<i>Figg</i>	93
4.2.2.4	<i>Autoclam System</i>	94
4.2.2.5	<i>SWAT</i>	94
4.2.2.6	<i>WIST</i>	95
4.3	<i>Gas-Permeability</i>	96
4.3.1	<i>Laboratory Gas-Permeability Test Methods</i>	97
4.3.1.1	<i>Influence of Moisture and the Need for Pre-Conditioning</i>	97

4.3.1.2	<i>Cembureau Gas-Permeability Test</i>	99
4.3.1.3	<i>South African Oxygen-Permeability Index Test</i>	100
4.3.2	<i>Site Gas-Permeability Test Methods</i>	102
4.3.2.1	<i>Figg</i>	103
4.3.2.2	<i>Hong-Parrott</i>	104
4.3.2.3	<i>Paulmann</i>	105
4.3.2.4	<i>TUD</i>	105
4.3.2.5	<i>GGT</i>	106
4.3.2.6	<i>Paulini</i>	106
4.3.2.7	<i>Autoclam System</i>	108
4.3.2.8	<i>Single-Chamber Vacuum Cell</i>	109
4.3.2.9	<i>Double-Chamber Vacuum Cell (Torrent)</i>	110
4.3.2.10	<i>Triple-Chamber Vacuum Cell (Kurashige)</i>	110
4.3.2.11	<i>Zia-Guth</i>	111
4.3.2.12	<i>“Seal” Method</i>	111
4.3.3	<i>Assessment of Concrete Quality by Gas-Permeability Test Methods</i>	112
4.4	<i>Comparative Test RILEM TC 189-NEC</i>	112
4.4.1	<i>Objective and Experiment Design</i>	112
4.4.2	<i>Evaluation of Test Results</i>	113
4.4.2.1	<i>Significance of Test Method</i>	113
4.4.2.2	<i>Correlation between Site and “Reference” Tests</i>	116
4.4.2.3	<i>Conclusions of the Comparative Test</i>	116
	<i>Acknowledgements</i>	117
	<i>References</i>	117
5	Torrent NDT method for coefficient of air-permeability	123
5.1	<i>Introduction: Why a Separate Chapter?</i>	123
5.2	<i>The Origin</i>	123
5.3	<i>Fundamentals of the Test Method</i>	124
5.3.1	<i>Principles of the Test Method</i>	124
5.3.2	<i>Historical Evolution</i>	126
5.3.3	<i>Operation of the Instrument</i>	129
5.3.4	<i>Model for the Calculation of the Coefficient of Air-Permeability kT</i>	129
5.3.5	<i>Relation between ΔP and \sqrt{t}</i>	133
5.3.5.1	<i>Theoretical Linear Response</i>	133

5.3.5.2	<i>Lack of Linear Response: Possible Causes</i>	135
5.3.6	<i>Relation between L and kT. Thickness Correction</i>	135
5.3.6.1	<i>Relation between Test Penetration L and kT</i>	135
5.3.6.2	<i>Correction of kT for Thickness</i>	137
5.4	<i>Relevant Features of the Test Method</i>	138
5.5	<i>Interpretation of Test Results</i>	139
5.5.1	<i>Permeability Classes</i>	139
5.5.2	<i>Microstructural Interpretation</i>	140
5.6	<i>Repeatability and Reproducibility</i>	141
5.6.1	<i>Testing Variability: Repeatability</i>	142
5.6.2	<i>Within-Sample Variability</i>	143
5.6.3	<i>Global Variability</i>	144
5.6.4	<i>Reproducibility</i>	145
5.6.4.1	<i>Reproducibility for Same Brand</i>	145
5.6.4.2	<i>Reproducibility for Different Brands</i>	148
5.7	<i>Effects and Influences on kT</i>	149
5.7.1	<i>Influence of Temperature of Concrete Surface</i>	150
5.7.1.1	<i>Influence of Low Concrete Temperature</i>	150
5.7.1.2	<i>Influence of High Air Temperature and Solar Radiation</i>	151
5.7.2	<i>Influence of Moisture of Concrete Surface</i>	151
5.7.2.1	<i>Influence of Natural and Oven Drying on kT</i>	154
5.7.2.2	<i>Compensation of kT for Surface Moisture</i>	157
5.7.2.3	<i>Pre-conditioning of Laboratory Specimens for kT Measurements</i>	160
5.7.3	<i>Effect/Influence of Age on kT</i>	161
5.7.3.1	<i>Effect/Influence of Age on Young Concrete</i>	162
5.7.3.2	<i>Effect/Influence of Age on Mature Concrete</i>	163
5.7.4	<i>Influence of Vicinity of Steel Bars</i>	165
5.7.5	<i>Influence of the Conditions of the Surface Tested</i>	167
5.7.5.1	<i>Influence of Specimen Geometry and Surface</i>	167
5.7.5.2	<i>Influence of Curvature</i>	168
5.7.5.3	<i>Influence of Roughness</i>	169
5.7.5.4	<i>Effect/Influence of Surface Air-Bubbles</i>	170
5.7.6	<i>Influence of Initial Pressure P_0</i>	172
5.7.7	<i>Influence of Porosity on the Recorded kT Value</i>	172

5.8	<i>Statistical Evaluation of kT Test Results</i>	173
5.8.1	<i>Statistical Distribution of kT Results</i>	173
5.8.2	<i>Central Value and Scatter Statistical Parameters</i>	174
5.8.2.1	<i>Parametric Analysis</i>	174
5.8.2.2	<i>Non-Parametric Analysis</i>	175
5.8.3	<i>Interpretation and Presentation of Results</i>	176
5.9	<i>Testing Procedures for Measuring kT in the Laboratory and On Site</i>	180
	<i>References</i>	180

6 Effect of key technological factors on concrete permeability 185

6.1	<i>Introduction</i>	185
6.2	<i>Effect of w/c Ratio and Compressive Strength on Concrete Permeability</i>	186
6.2.1	<i>Data Sources</i>	186
6.2.1.1	<i>HMC Laboratories</i>	186
6.2.1.2	<i>ETHZ Cubes</i>	187
6.2.1.3	<i>General Building Research Corporation of Japan</i>	188
6.2.1.4	<i>University of Cape Town</i>	188
6.2.1.5	<i>KEMA</i>	188
6.2.1.6	<i>Other</i>	189
6.2.2	<i>Effect of w/c Ratio and Strength on Gas-Permeability</i>	189
6.2.2.1	<i>Cembureau Test Method</i>	189
6.2.2.2	<i>OPI Test Method</i>	191
6.2.2.3	<i>Torrent kT Test Method</i>	192
6.2.3	<i>Effect of w/c Ratio on Water-Permeability</i>	195
6.2.3.1	<i>Water Penetration under Pressure</i>	195
6.2.3.2	<i>Water Sorptivity</i>	196
6.3	<i>Effect of Binder on Concrete Permeability</i>	197
6.3.1	<i>Effect of OPC Strength on Permeability</i>	197
6.3.2	<i>Effect of Binder Type on Permeability</i>	199
6.3.2.1	<i>“Conventional” Binders</i>	199
6.3.2.2	<i>“Unconventional” Binders</i>	205
6.4	<i>Effect of Aggregate on Concrete Permeability</i>	209
6.4.1	<i>Effect of Bulk Aggregate on Concrete Permeability</i>	209
6.4.1.1	<i>Porous Aggregates</i>	209
6.4.1.2	<i>Recycled Aggregates</i>	210
6.4.1.3	<i>Spherical Steel Slag Aggregates</i>	213
6.4.2	<i>Effect of ITZ on Concrete Permeability</i>	214

6.5	<i>Effect of Special Constituents on Concrete Permeability</i>	218
6.5.1	<i>Pigments</i>	219
6.5.2	<i>Fibres</i>	220
6.5.3	<i>Polymers</i>	222
6.5.4	<i>Expansive Agents</i>	223
6.6	<i>Effect of Compaction, Segregation and Bleeding on Permeability</i>	226
6.7	<i>Effect of Curing on Permeability</i>	233
6.7.1	<i>Relevance of Curing for Concrete Quality</i>	233
6.7.2	<i>Effect of Curing on Permeability</i>	234
6.7.2.1	<i>Investigations in the Laboratory</i>	234
6.7.2.2	<i>Investigations in the Field</i>	237
6.7.3	<i>Effect of Curing on Air-Permeability kT</i>	239
6.7.3.1	<i>Conventional Curing</i>	239
6.7.3.2	<i>Self-Curing</i>	243
6.7.3.3	<i>Accelerated Curing</i>	244
6.7.3.4	<i>“3M-Sheets” Curing</i>	246
6.8	<i>Effect of Temperature on Permeability</i>	247
6.9	<i>Effect of Moisture on Permeability</i>	252
6.10	<i>Effect of Applied Stresses on Permeability</i>	259
6.10.1	<i>Effect of Compressive Stresses</i>	259
6.10.2	<i>Effect of Tensile Stresses</i>	262
6.11	<i>Permeability of Cracked Concrete</i>	263
6.11.1	<i>Permeability through Cracks: Theory</i>	263
6.11.2	<i>Effect of Cracks on Permeability</i>	265
6.11.3	<i>Self-Healing of Cracks and Permeability</i>	270
	<i>References</i>	275
7	<i>Why durability needs to be assessed on site?</i>	287
7.1	<i>Theorecrete, Labcrete, Realcrete and Covercrete</i>	287
7.1.1	<i>Theorecrete</i>	287
7.1.2	<i>Labcrete</i>	289
7.1.3	<i>Realcrete</i>	289
7.1.4	<i>Covercrete</i>	290
7.1.5	<i>Quality Loss between Covercrete and Labcrete</i>	292
7.1.5.1	<i>Bözberg Tunnel</i>	292
7.1.5.2	<i>Schaffhausen Bridge</i>	293
7.1.5.3	<i>Lisbon Viaduct</i>	296
7.1.5.4	<i>Swiss Bridges’ Elements</i>	297
7.2	<i>Achieving High Covercrete’s Quality</i>	299
7.2.1	<i>Mix Design and Curing</i>	299

7.2.2	UHPFRC	299
7.2.3	Controlled Permeable Formwork (CPF) Liners	301
7.2.3.1	Action Mechanism of CPF Liners	301
7.2.3.2	Impact of CPF on the "Penetrability" of the Covercrete	302
7.2.4	Shrinkage-Compensating Concrete	308
7.2.5	Self-Consolidating Concrete	308
7.2.6	Permeability-Reducing Agents	310
7.3	Cover Thickness	312
7.4	Spacers and Permeability	315
7.5	Concluding Remarks	316
	References	317
8	Why air-permeability kT as durability indicator?	321
8.1	Introduction	321
8.2	Response of kT to Changes in Key Technological Parameters of Concrete	322
8.3	Correlation with Other Durability Tests	323
8.3.1	Gas Permeability	324
8.3.1.1	Cembureau Test	324
8.3.1.2	South-African OPI	330
8.3.1.3	Figg Air and TUD Permeability	331
8.3.2	Oxygen-Diffusivity	332
8.3.3	Capillary Suction	332
8.3.3.1	Coefficient of Water Absorption at 24 Hours	332
8.3.3.2	Figg Water	333
8.3.3.3	Karsten Tube	333
8.3.4	Water-Permeability and Penetration under Pressure	334
8.3.5	Migration	334
8.3.5.1	Rapid Chloride Permeability Test ("RCPT" ASTM C1202)	335
8.3.5.2	Coefficient of Chloride Migration (NT Build 492)	335
8.3.5.3	Electrical Resistivity (Wenner Method)	336
8.3.5.4	South African Chloride Conductivity Index	337
8.3.6	Chloride-Diffusion	338
8.3.6.1	Laboratory Diffusion Tests	338
8.3.6.2	Site Chloride Ingress in Old Structures	340

8.3.7	<i>Carbonation</i>	340
8.3.7.1	<i>Laboratory Tests (Natural Carbonation)</i>	340
8.3.7.2	<i>Laboratory Tests (Accelerated Carbonation)</i>	341
8.3.7.3	<i>Site Carbonation in Old Structures</i>	343
8.3.8	<i>Frost Resistance</i>	344
8.4	<i>Some Negative Experiences</i>	348
8.4.1	<i>Tunnel in Aargau, Switzerland</i>	348
8.4.2	<i>Wotruba Church, Vienna, Austria</i>	349
8.4.3	<i>Ministry of Transport, Ontario, Canada</i>	350
8.4.4	<i>Mansei Bridge, Aomori, Japan</i>	351
8.4.5	<i>Tests at FDOT Laboratory</i>	352
8.5	<i>Air-Permeability kT in Standards and Specifications</i>	352
8.5.1	<i>Swiss Standards</i>	352
8.5.2	<i>Argentina</i>	354
8.5.3	<i>Chile</i>	355
8.5.4	<i>China</i>	355
8.5.5	<i>India</i>	355
8.5.6	<i>Japan</i>	355
8.6	<i>Credentials of Air-Permeability kT as Durability Indicator</i>	355
	<i>References</i>	356

9 Service life assessment based on site permeability tests 361

9.1	<i>Introduction</i>	361
9.2	<i>General Principles of Corrosion Initiation Time Assessment</i>	364
9.2.1	<i>Carbonation-Induced Steel Corrosion</i>	364
9.2.2	<i>Chloride-Induced Steel Corrosion</i>	368
9.3	<i>Service Life Assessment of New Structures with Site Permeability Tests</i>	370
9.3.1	<i>Carbonation: Parrott's Model</i>	370
9.3.2	<i>Carbonation: South African OPI Model</i>	371
9.3.2.1	<i>"Deemed-to-Satisfy" Approach</i>	371
9.3.2.2	<i>"Rigorous" Approach</i>	372
9.3.2.3	<i>Acceptance Criteria</i>	372
9.3.2.4	<i>Probabilistic Treatment</i>	373
9.3.3	<i>"Seal" Method for Chloride-Induced Steel Corrosion</i>	373
9.4	<i>Service Life Assessment of New Structures Applying Site kT Tests</i>	373

9.4.1	<i>The “TransChlor” Model for Chloride-Induced Steel Corrosion</i>	373
9.4.2	<i>Kurashige and Hironaga’s Model for Carbonation-Induced Steel Corrosion</i>	377
9.4.3	<i>The “Exp-Ref” Method: Principles</i>	379
9.4.3.1	<i>The “Exp-Ref” Method for Chloride-Induced Steel Corrosion</i>	381
9.4.3.2	<i>The “Exp-Ref” Method for Carbonation-Induced Steel Corrosion</i>	383
9.4.3.3	<i>The CTK “Cycle” Approach</i>	387
9.4.4	<i>Belgacem et al.’s Model for Carbonation-Induced Steel Corrosion</i>	389
9.5	<i>Service Life Assessment of Existing Structures Applying Site kT Tests</i>	390
9.5.1	<i>Calibration with Drilled Cores</i>	391
9.5.2	<i>Pure Non-destructive Approach</i>	392
	<i>References</i>	395
10	The role of permeability in explosive spalling under fire	399
10.1	<i>Effect of Fire on Reinforced Concrete Structures</i>	399
10.2	<i>Explosive Spalling of Concrete Cover</i>	400
10.3	<i>The Role of Concrete Permeability in Explosive Spalling</i>	402
10.4	<i>Coping with HSC</i>	403
10.5	<i>Concluding Remarks</i>	407
	<i>References</i>	408
11	Real cases of kT test applications on site	411
11.1	<i>Introduction</i>	411
11.2	<i>Full-Scale Investigations</i>	411
11.2.1	<i>RILEM TC 230-PSC (Chlorides and Carbonation)</i>	411
11.2.2	<i>Naxberg Tunnel (Chlorides and Carbonation)</i>	415
11.2.2.1	<i>Scope of the Investigation</i>	415
11.2.2.2	<i>Mixes Composition and Laboratory Test Results</i>	416
11.2.2.3	<i>Characteristics of the 32 Panels</i>	418
11.2.2.4	<i>On-Site Non-Destructive kT Measurements</i>	418
11.2.2.5	<i>Core Drilling, Carbonation and Chloride Ingress</i>	420

11.2.2.6	<i>Conclusions</i>	423
11.3	<i>New Structures</i>	423
11.3.1	<i>Port of Miami Tunnel (Carbonation)</i>	423
11.3.1.1	<i>Description of the Tunnel</i>	423
11.3.1.2	<i>The Problem</i>	424
11.3.1.3	<i>Scope of the Investigation</i>	426
11.3.1.4	<i>Site kT Test Results</i>	426
11.3.1.5	<i>Modelling Carbonation at 150 Years</i>	427
11.3.1.6	<i>Conclusions</i>	429
11.3.2	<i>Hong Kong-Zhuhai-Macao Link (Chlorides)</i>	430
11.3.3	<i>Panama Canal Expansion (Chlorides)</i>	434
11.3.4	<i>Precast Coastal Defence Elements (Sulphates)</i>	438
11.3.4.1	<i>Aggressiveness of the Water</i>	439
11.3.4.2	<i>Durability Requirements</i>	441
11.3.4.3	<i>Concrete Mix Quality Compliance</i>	441
11.3.4.4	<i>Precast Elements' Compliance</i>	442
11.3.4.5	<i>Conclusions on the Durability of the Elements</i>	445
11.3.5	<i>Buenos Aires Metro (Water-Tightness)</i>	445
11.3.6	<i>HPSFRC in Italy (Water-Tightness)</i>	448
11.3.6.1	<i>Description of the Case</i>	448
11.3.6.2	<i>Characteristics of the Concretes Used for the Different Elements</i>	450
11.3.6.3	<i>Air-Permeability kT Tests Performed</i>	450
11.3.6.4	<i>Performance of SCC-SFRC Elements</i>	451
11.3.6.5	<i>Performance of Walls</i>	452
11.3.6.6	<i>Performance of Precast Columns</i>	452
11.3.6.7	<i>Conclusions</i>	453
11.3.7	<i>UHPFRC in Switzerland (Chlorides)</i>	453
11.3.8	<i>Field Tests on Swiss New Structures</i>	456
11.3.9	<i>Field Tests on Portuguese New Structures</i>	456
11.3.9.1	<i>Bridge at the North of Lisbon (Quality Control/Carbonation)</i>	456
11.3.9.2	<i>Urban Viaduct in Lisbon (Quality Control)</i>	458
11.3.9.3	<i>Sewage Treatment Plant (Chemical Attack)</i>	460
11.3.10	<i>Delamination of Industrial Floors in Argentina ("Defects" Detection)</i>	461
11.4	<i>Old Structures</i>	462
11.4.1	<i>Old Structures in Japan</i>	462

11.4.1.1	<i>Tokyo's National Museum of Western Art (Carbonation)</i>	463
11.4.1.2	<i>Jyugou Bridge (Condition Assessment)</i>	465
11.4.1.3	<i>Other Japanese Structures (Condition Assessment)</i>	466
11.4.2	<i>Old (and New) Swiss Structures (Chlorides + Carbonation)</i>	467
11.4.2.1	<i>Investigated Structures and Tests Performed</i>	467
11.4.2.2	<i>Combined Analysis of Results</i>	469
11.4.2.3	<i>Conclusions of the Investigations</i>	471
11.4.3	<i>Permeability and Condition of Concrete Structures in the Antarctic</i>	472
11.4.3.1	<i>The "Carlini" Base</i>	472
11.4.3.2	<i>The Climate</i>	473
11.4.3.3	<i>Buildings Construction and Exposure</i>	473
11.4.3.4	<i>Scope of the Investigation</i>	474
11.4.3.5	<i>Identified Pathologies</i>	475
11.4.3.6	<i>On-Site Measurements of Air-Permeability kT</i>	475
11.4.4	<i>Permeability of a Concrete Structure in the Chilean Atacama Desert</i>	477
11.5	<i>Unconventional Applications</i>	479
11.5.1	<i>Concrete Wine Vessels</i>	479
11.5.2	<i> Rocks and Stones</i>	483
11.5.2.1	<i>Permeability of Stones as Building Material</i>	483
11.5.2.2	<i>Permeability of Rocks for Oil and Gas Exploitation</i>	485
11.5.2.3	<i>Permeability of Rocks for Nuclear Waste Disposal</i>	487
11.5.3	<i>Timber</i>	488
11.5.4	<i>Ceramics</i>	490
	<i>References</i>	491
12	Epilogue: the future	499
12.1	<i>Chapter 1: Durability</i>	499
12.2	<i>Chapter 2: Permeability</i>	501
12.3	<i>Chapter 3: Microstructure and Transport Theories</i>	502
12.4	<i>Chapter 4: Permeability Test Methods</i>	502
12.5	<i>Chapter 5: kT Air-Permeability Test Method</i>	503

12.6 <i>Chapter 6: Factors Influencing Concrete Permeability</i>	503
12.7 <i>Chapter 7: Theorecrete, Labcrete, Realcrete and Covercrete</i>	504
12.8 <i>Chapter 8: kT Air-Permeability as Durability Indicator</i>	505
12.9 <i>Chapter 9: Modelling Based on Site Permeability Tests</i>	505
12.10 <i>Chapter 10: Gas Permeability and Fire Protection</i>	507
12.11 <i>Chapter 11: Applications of Air-Permeability kT Tests</i>	507
References	508
<i>Annex A: Transport test methods other than permeability</i>	511
<i>Annex B: Model standard for measuring the coefficient of air-permeability kT of hardened concrete</i>	529
Index	543