
Contents

Preface, xvii

Acknowledgments, xix

CHAPTER 1 ■ Overview of Control Theory and System	1
1.1 BRIEF HISTORY AND DEVELOPMENTS OF CONTROL SYSTEMS	1
1.2 CONTROL SYSTEMS AND THEORY	4
1.2.1 Control Theory and Engineering	5
1.2.2 Definition of a Control System	9
1.2.3 Features of a Control System	10
1.2.4 Requirements of a Good Control System	10
1.2.5 Advantages of Control Systems or Why Do We Need Control Systems?	10
1.3 SYSTEM CONFIGURATIONS	14
1.3.1 Open-Loop Control System	14
1.3.1.1 <i>Practical Examples of Open-Loop Control System</i>	14
1.3.1.2 <i>Advantages and Disadvantages of Open-Loop Control System</i>	14
1.3.2 Closed-Loop or Feedback Control System	16
1.3.2.1 <i>Advantages and Disadvantages of Closed-Loop Control System</i>	18
1.3.3 Comparison of Closed-Loop and Open-Loop Control Systems	19
1.3.4 Components of Closed-Loop System	19
1.4 APPLICATION OF CONTROL THEORY IN ENGINEERING AND TECHNOLOGY	19
1.4.1 Control System Engineering	19
1.4.2 Differential Equation of a System	20
1.4.3 Physical Model and System Block Diagram	21
1.5 BASIC ELEMENTS OF THE CONTROL SYSTEM	24
1.6 BASIC TYPES OF AUTOMATIC CONTROL SYSTEMS	25

1.6.1	According to the Motion Law of Quantity	25
1.6.2	According to the System Response Characteristics	25
1.6.3	According to Implementation of the Components of the Physical Properties	26
1.6.4	Classification According to the Type of Control	26
1.7	DESIGN AND ANALYSIS PROCESS	27
1.7.1	Design and Compensation of Control Systems	27
1.7.2	Control Systems Analysis Process	27
1.8	TEST WAVEFORMS USED IN CONTROL SYSTEMS	31
	EXAMPLES	32
	EXERCISES	36
	MCQ AND TRUE/FALSE QUESTIONS	39
<hr/> CHAPTER 2 ■ Transfer Function and Modeling of Control Systems		47
2.1	MATHEMATICAL MODELING OF THE CONTROL SYSTEM	47
2.1.1	Differential Equation of the Control System	48
2.1.2	Linearization of the Differential Equation	57
2.2	LAPLACE TRANSFORMATION AND INVERSE TRANSFORMATION	62
2.2.1	Applications of Laplace Transform	62
2.2.2	Characterization of LTI Systems Using Laplace Transform	62
2.2.3	Definition of Laplace Transformation	63
2.2.4	Laplace Transformation of Some General Function	63
2.2.5	Property of the Laplace Transformation	66
2.2.6	Laplace Transformation Table	77
2.2.7	Graphs of Hyperbolic Functions	77
2.2.8	Inverse Laplace Transformation	83
2.2.9	Inverse Hyperbolic Functions	84
2.2.10	Graphs of Inverse Hyperbolic Functions	85
2.3	CONSTANT COEFFICIENT LINEAR DIFFERENTIAL FUNCTION USING THE LAPLACE TRANSFORMATION	90
2.4	TRANSFER FUNCTION	93
2.4.1	The Advantages of the Transfer Function	94
2.4.2	Mathematical Representation of the Transfer Function	95
2.4.3	Comments and Keynotes	96
2.5	FUNCTION TRANSFORMATIONS	96
2.5.1	Impulse Response Function (IRF)	97

2.5.2	Laplace Transformation Theorems	97
2.6	CONSTANT CONTROL ACTION OF TRANSFER FUNCTION	97
2.7	CONTROL SYSTEM MODELING	113
2.8	MECHANICAL SYSTEM MODELING OF CONTROL SYSTEM	122
2.8.1	Translational Mechanical System Transfer Functions	122
2.8.2	Rotational Mechanical System Transfer Functions	123
2.8.3	Equation of Motion by Inspection	125
2.9	MATHEMATICAL MODELING OF ELECTRICAL AND ELECTRONIC SYSTEMS	127
2.9.1	Electrical and Electronic Systems	127
2.9.2	Electromechanical System	140
2.10	LIQUID-LEVEL SYSTEMS AND THERMAL SYSTEM	143
2.10.1	Liquid-Level Systems	143
2.10.2	Liquid-Level Systems with Interaction	145
2.10.3	Thermoelectrical System	146
EXAMPLES		149
EXERCISES		151
MCQ AND TRUE/FALSE QUESTIONS		158

CHAPTER 3 ■	Automatic Control Systems, Block Diagrams, and Signal Flow Graphs	161
3.1	AUTOMATIC CONTROL SYSTEMS	161
3.1.1	Functions of Automatic Controllers	162
3.1.2	Automatic Control Systems Representation	162
3.1.3	Classifications of Automatic or Industrial Controllers	163
3.1.4	Transfer Function of Automatic or Industrial Controllers	167
3.2	BLOCK DIAGRAM OF CONTROL SYSTEM AND ITS SIMPLIFICATION	167
3.2.1	Components of the Block Diagram	167
3.2.2	Equivalent Transformation of the Block Diagram	168
3.2.3	Rules of Equivalence for Block Diagrams	170
3.3	DIFFERENT KINDS OF BLOCK DIAGRAM	172
3.4	REDUCTION OF BLOCK DIAGRAMS	179
3.5	SIGNAL FLOW GRAPH AND MASON'S RULES	184
3.5.1	Signal Flow Graphs	184
3.5.2	Terms of Signal Flow Graph	186
3.5.3	Signal Flow Graph Algebra	188

3.5.4	Signal Flow Graph of Linear System	189
3.5.5	Signal Flow Graph of a Control System	189
3.6	MASON'S RULES AND MASON'S GAIN FORMULA	190
	EXERCISES	201
	MCQ AND TRUE/FALSE QUESTIONS	203
<hr/> CHAPTER 4 ■ Transient Response Analyses in Time Domain		205
4.1	TYPICAL SIGNALS ANALYSIS IN TIME DOMAIN	205
4.1.1	Step Function and Unit-Step Function	206
4.1.2	Ramp Function and Unit-Ramp Function	206
4.1.3	Parabolic (Acceleration) Function	207
4.1.4	Impulse Function	208
4.1.5	Sinusoid Function	209
4.2	CONTROL SYSTEMS ANALYSIS AND ANALYZING PROCESS	210
4.2.1	Transient Response and Steady-State Response	210
4.2.2	Stability, Absolute Stability, Relative Stability and Steady-State Error	212
4.3	TRANSIENT RESPONSE OF FIRST-ORDER SYSTEMS	213
4.3.1	Unit-Step Response of First-Order Systems	213
4.3.2	Unit-Ramp Response of First-Order System	216
4.3.3	Unit-Impulse Response of First-Order System	218
4.3.4	Important Property of LTI Systems	220
4.3.5	Time Response of First-Order System	221
4.4	TRANSIENT RESPONSE OF SECOND-ORDER SYSTEMS	222
4.4.1	Unit-Step Response of Second-Order Systems	225
4.5	SECOND-ORDER SYSTEMS AND TRANSIENT RESPONSE SPECIFICATIONS	239
4.5.1	Definition of Transient Response Specifications	239
4.5.2	Comments on Transient Response Specifications	242
4.5.3	Transient Response Specifications of Second-Order Systems for Underdamped Case	242
4.5.4	Transient Response Specifications of Second-Order Systems for Overdamped and Critically Damped Condition	263
4.5.5	Servo System with Velocity-Feedback System	267
4.5.6	Unit-Impulse Response of the Second-Order System	270
4.5.7	Unit-Ramp Response of the Second-Order System	280

4.6	TRANSIENT RESPONSE OF HIGH-ORDER SYSTEMS	289
4.6.1	Real Poles and Pairs of Complex-Conjugate Poles of Higher-Order Systems	290
4.7	STABILITY ANALYSES AND CRITERION	295
4.7.1	Stability Analysis in Complex Plane	297
4.7.2	Routh's Stability Criterion of Stability Analyses	299
4.7.3	Effects of Integral Control Actions on System Performance	304
4.7.4	Effects of Derivative Control Actions on System Performance	310
4.7.5	Steady-State Errors in Unity-Feedback Control Systems	313
4.7.6	Gear Train System and SSE for Disturbances	321
4.8	MATLAB AND MATLAB SIMULINK	326
	MATLAB SIMULINK	337
	EXAMPLES	351
	EXERCISES	357
	MCQ AND TRUE/FALSE QUESTIONS	362
<hr/> CHAPTER 5 ■ Root-Locus Method: Control System Analysis and Design		373
5.1	ROOT-LOCUS PLOTS OF NEGATIVE-FEEDBACK SYSTEMS	373
5.1.1	Locate Poles and Zeros on S-Plane	374
5.2	ROOT-LOCUS METHOD	376
5.2.1	General Rules for Constructing Root-Loci	376
5.2.2	Preview Constructing Root-Loci	376
5.2.3	Root-Locus and the System Performance	383
5.2.4	Relationship between the Closed-Loop Zero-Pole and the Open-Loop Zero-Pole	384
5.2.5	The Condition of the Root-Locus: Angle and Amplitude	385
5.3	ROOT-LOCUS CURVE OF A SIMPLE SYSTEM	388
5.4	BASIC RULES FOR PLOTTING OF THE ROOT-LOCUS DIAGRAM	391
5.5	GENERALIZED ROOT-LOCUS (PARAMETER ROOT-LOCUS)	412
5.6	THE ZERO ROOT-LOCUS	414
5.7	COMMENTS ON ROOTS-LOCUS PLOTS OF NEGATIVE-FEEDBACK SYSTEMS	419
5.7.1	Comments on the Root-Locus Plots	419
5.7.2	Typical Pole-Zero Configurations and Corresponding Root-Loci	419
5.7.3	Constant ξ Loci and Constant ω_n Loci	420
5.7.4	Conditionally Stable Systems	422

5.7.5	Nonminimum Phase Systems	422
5.7.6	Orthogonality of Root-Loci and Constant-Gain Loci	422
5.8	COMMENTS OF POSITIVE-FEEDBACK SYSTEMS	424
5.8.1	Roots-Locus Plots of Positive-Feedback Systems	424
5.8.2	Rules for Positive-Feedback Systems	426
5.8.3	Negative-Feedback and Positive-Feedback Systems	426
5.9	ROOT-LOCUS APPROACH TO CONTROL SYSTEMS DESIGN	428
5.9.1	Design by Root-Locus Method	428
5.9.2	Series Compensation & Parallel (or Feedback) Compensation	428
5.9.3	Effects of the Addition of Poles and Zeros	429
5.10	EXAMPLES OF ROOT-LOCUS APPLICATION BY MATLAB FUNCTION	431
5.10.1	Plot the Root-Loci	431
5.10.2	Judge the Stability of the System Using the Root-Locus Methods	435
EXAMPLES		437
EXERCISES		440
MCQ AND TRUE/FALSE QUESTIONS		445
CHAPTER 6 ■ Control System Analysis and Design by Frequency-Response Analyses		451
6.1	CHARACTERISTICS OF FREQUENCY	451
6.1.1	Mathematical Basis of Frequency Method	451
6.1.2	Steady-State Output (O/P) to Sinusoidal Input (I/P)	457
6.1.3	The Basic Concept of Frequency Characteristics	460
6.1.4	Geometric Representation of Frequency Characteristics	468
6.2	CHARACTERISTICS OF FREQUENCY RESPONSE	469
6.2.1	Bode Diagram or Logarithmic Plot	469
6.2.2	Basic Factors of $G(j\omega)H(j\omega)$	470
6.2.2.1	<i>Gain K</i>	470
6.2.2.2	<i>Integral and Derivative Factors, $(j\omega)^{\pm 1}$</i>	471
6.2.2.3	<i>First-Order Factors $(1+j\omega T)^{-1}$</i>	472
6.2.2.4	<i>First-Order Factors $(1+j\omega T)^1$</i>	475
6.2.2.5	<i>First-Order Factors $(1+j\omega T)^{\pm n}$</i>	475
6.2.2.6	<i>Quadratic Factors & Resonant Frequency</i>	476
6.2.2.7	<i>Resonant frequency ω_r and the Resonant Peak Value M_r</i>	479

6.3	FREQUENCY RESPONSE OF THE NYQUIST PLOT OR POLAR PLOT	481
6.3.1	Polar Plots and General Shapes of Polar Plots	481
6.3.1.1	<i>Integral and Derivative Factors</i>	482
6.3.1.2	<i>First-Order Factors</i>	482
6.3.1.3	<i>Quadratic Factors</i>	484
6.3.2	Natural and Resonant Frequency in Polar Plot	485
6.3.3	Nyquist Diagram of a Typical Part	487
6.3.3.1	<i>The Proportional Amplification Gain Factor</i>	487
6.3.3.2	<i>Integral Factor</i>	488
6.3.3.3	<i>Differential Factor</i>	488
6.3.3.4	<i>First-Order Differential Factor</i>	489
6.3.3.5	<i>First-Order Interial Factor</i>	489
6.3.3.6	<i>Second-Order Oscillation Relation</i>	490
6.3.3.7	<i>Second-Order Differential Relation</i>	495
6.3.3.8	<i>Delay Relation</i>	496
6.3.4	Drawing of Nyquist Plot	496
6.4	BODE DIAGRAM OR LOGARITHMIC PLOT OF FREQUENCY RESPONSE	506
6.4.1	Bode Diagram or Logarithmic Plot of Typical Relations	509
6.4.1.1	<i>Proportional Gain Factor</i>	509
6.4.1.2	<i>Integral Factors</i>	509
6.4.1.3	<i>Second-Order Integral Factors</i>	510
6.4.1.4	<i>Derivative Factors</i>	511
6.4.1.5	<i>First-Order Inertia Factor</i>	511
6.4.1.6	<i>First-Order Differential Factor</i>	513
6.4.1.7	<i>Second-Order Inertia Factor</i>	513
6.4.1.8	<i>Second-Order Differential Factor</i>	516
6.4.1.9	<i>Delay Factor</i>	517
6.4.2	General Method of Bode Diagram Drawing	518
6.4.3	Steps for Drawing Bode Diagram	518
6.4.4	Minimum-Phase System	521
6.4.5	Obtain System Transfer Function from the Frequency-Response Curve	523

6.5	RELATIONSHIP BETWEEN SYSTEM TYPE AND LOG-MAGNITUDE CURVE	523
6.6	THE CLOSED-LOOP FREQUENCY RESPONSE OF THE CONTROL SYSTEM	530
6.6.1	Estimation of Closed-Loop Frequency Characteristics	530
6.6.2	The Frequency-Domain Index of the System	532
6.7	NYQUIST STABILITY AND MAPPING THEOREM	535
6.7.1	Nyquist Stability Criterion	535
6.7.2	Summary of Nyquist Stability Criterion	536
6.7.3	Remarks on Nyquist Stability Criterion	536
6.8	PHASE MARGIN AND GAIN MARGIN	540
6.8.1	Phase Margin	540
6.8.2	Gain Margin	540
6.8.3	Minimum, Non-minimum-Phase Margin and Gain Margin	542
6.8.4	Phase Margin and Gain Margin of First- and Second-Order Systems	542
6.8.5	Comments on Phase and Gain Margins	542
6.8.6	Negative Margins Indicate Instability	543
6.9	CUTOFF FREQUENCY, BANDWIDTH (BW), AND CUTOFF RATE	544
6.9.1	Cutoff Frequency	544
6.9.2	Bandwidth (BW)	545
6.9.3	Cutoff Rate	545
6.10	STEP TRANSIENT RESPONSE AND FREQUENCY RESPONSE, M AND N CIRCLES	545
6.10.1	Closed-Loop Frequency Response of Unity-Feedback System	545
6.10.2	Constant-Magnitude Loci (M Circles)	547
6.10.3	Constant-Phase-Angle Loci (N Circles)	549
6.10.4	Use of M and N Circles	551
6.11	MATLAB FUNCTIONS FOR BODE DIAGRAM AND NYQUIST DIAGRAM	554
	EXAMPLES	561
	EXERCISES	563
	MCQ AND TRUE/FALSE QUESTIONS	568

CHAPTER 7 ■ Nonlinearity in Control Systems	575
7.1 TYPICAL NONLINEAR SYSTEM	575
7.1.1 Ininsensitive Zone (Dead Zone)	575
7.1.2 Saturation Characteristic	576
7.1.3 The Gap or Clearance Characteristics	577
7.1.4 Relay Characteristics	577
7.2 ANALYSIS OF NONLINEAR SYSTEMS	578
7.3 DESCRIBING FUNCTION	578
7.4 COMMON DESCRIBING FUNCTION OF NONLINEAR ELEMENT	581
7.4.1 Describing Function in Ininsensitive Area (Dead Zone)	582
7.4.2 Describing Function of Saturation Characteristics	583
7.4.3 Two-Position Relay Characteristic	584
7.4.4 Three-Position Relay Characteristic	585
7.4.5 Describing Function of Gap or Clearance Characteristics	586
7.4.6 Describing Function of Relay Characteristics in Ininsensitive Region (Dead Zone)	588
7.5 STABILITY OF NONLINEAR SYSTEMS	590
7.5.1 Stability Analysis of Nonlinear Systems	593
7.5.2 Determination of Self-Oscillation	596
7.6 PHASE PLANE ANALYSIS	602
7.6.1 Plotting of Phase Curves	602
7.6.1.1 <i>Analytical Method</i>	602
7.6.1.2 <i>Isoclinic Line Method</i>	607
7.6.1.3 <i>The δ Method</i>	610
7.6.2 Determine Time Information by Phase Plane	613
7.6.3 Singularity of the Phase Plane	616
7.6.4 The Limit Cycle on the Phase Plane	618
7.7 PHASE PLANE ANALYSIS OF NONLINEAR SYSTEMS	623
7.7.1 Nonlinear Phase Plane at Zero Input	623
7.7.2 Nonlinear Phase Curve of Step and Ramp Input	627
7.8 LIAPUNOV METHOD	631
EXAMPLES	634
EXERCISES	639

CHAPTER 8 ■ Distributed Control System	643
8.1 THE Z-TRANSFORM	643
8.1.1 Sampler and Holder	643
8.1.1.1 <i>Sampling</i>	643
8.1.1.2 <i>Holding</i>	643
8.1.2 Evaluate the Z-Transformations by Definition	645
8.1.2.1 <i>Definition of Z-Transform</i>	645
8.1.3 Evaluate Z-Transformations by Residue Theorem	648
8.1.4 Properties of Z-Transform	649
8.1.4.1 <i>Linear Theorem</i>	649
8.1.4.2 <i>Initial Value Theorem</i>	649
8.1.4.3 <i>Final Value Theorem</i>	650
8.1.4.4 <i>Real Shifting Theorem</i>	651
8.1.4.5 <i>Complex Shifting Theorem</i>	652
8.1.4.6 <i>Translation Theorem of Impulse Train (Delay Theorem)</i>	653
8.1.4.7 <i>Shifting Theorem of Impulse Train</i>	654
8.1.4.8 <i>Z-Transformation of Weighted Impulse Train (Scaling Factor)</i>	656
8.1.4.9 <i>Differential Theorem of Impulse Train</i>	656
8.1.4.10 <i>Z-Transformation of Difference Equations</i>	657
8.1.4.11 <i>Z-Transformation for Sum of Impulse Train</i>	658
8.1.4.12 <i>Convolution Theorem</i>	659
8.2 THE INVERSE Z-TRANSFORM	660
8.2.1 Formulae of Inverse Z-Transform	660
8.2.2 The Inverse Z-Transformation with Power Series	661
8.2.3 Partial Fraction Expansion Method	662
8.3 THE Z-TRANSFORM TO EVALUATE DIFFERENCE EQUATIONS	664
8.4 IMPULSE OR PULSE TRANSFER FUNCTION	666
8.4.1 Definition and Solution for Pulse Transfer Function	666
8.4.2 The Impulse Transfer Function of Series Connected Open-Loop System	667
8.5 THE OPEN-LOOP PULSE TRANSFER FUNCTION WITH ZERO-ORDER HOLDER	670
8.6 PULSE TRANSFER FUNCTION OF CLOSED-LOOP SYSTEM	673
8.7 STABILITY ANALYSIS OF PULSE SYSTEMS	677
8.7.1 Stability Analysis	679

8.8 APPLICATION OF MATLAB LANGUAGE IN DISCRETE CONTROL SYSTEM	685
EXAMPLES	687
EXERCISES	690
CHAPTER 9 ■ Applications with PID and Motor Control System	695
9.1 DC AND AC MOTORS	696
9.1.1 DC Motors	696
9.1.1.1 <i>Series Wound</i>	698
9.1.1.2 <i>Shunt Wound</i>	698
9.1.1.3 <i>Compound Wound</i>	698
9.1.1.4 <i>Permanent Magnet</i>	698
9.1.2 AC Motors	698
9.1.2.1 <i>Types of AC Motors</i>	699
9.2 STEPPER AND SERVOMOTORS	700
9.2.1 Stepper Motors	700
9.2.1.1 <i>Stepper Limitations</i>	700
9.2.2 Servomotors	701
9.2.2.1 <i>Servo Limitations</i>	703
9.2.3 Servo Motor Mechanism	703
9.2.3.1 <i>Working of Servomotors</i>	704
9.2.4 Construction of Servo Motor	705
9.2.5 Working Principle of Servo Motor	705
9.2.5.1 <i>Position Control Unit</i>	708
9.2.5.2 <i>Speed Control Unit</i>	712
9.2.5.3 <i>Complete Servo Motor Driver</i>	719
9.2.5.4 <i>Adjustment of Drive Gain Parameters</i>	719
9.2.6 Servomotor Control	721
9.2.6.1 <i>Controlling Servomotor</i>	725
9.2.7 Continuous Rotation Servomotors	725
9.2.7.1 <i>Different Types of Servomotor and Its Applications</i>	726
9.2.8 Types of servomotor	726
9.2.8.1 <i>DC servomotor</i>	727
9.2.8.2 <i>DC servomotor Principle and Its Applications</i>	727
9.2.8.3 <i>DC servomotor Working Principle</i>	727
9.2.8.4 <i>Control Signal and Pulse Width Modulator (PWM)</i>	728

9.2.8.5 <i>Characteristics of DC Servomotor</i>	729
9.2.8.6 <i>Types of DC servomotor</i>	730
9.2.8.7 <i>Transfer Function and Block Diagram</i>	731
9.2.8.8 <i>Transfer Function and Block Diagram</i>	732
9.2.8.9 <i>Difference between servomotor and DC Motor</i>	733
9.2.8.10 <i>DC Servomotor Applications</i>	733
9.2.8.11 <i>DC servomotor Advantages and Disadvantages</i>	733
9.2.9 Servo Motor Interfacing with Microcontroller	741
9.2.9.1 <i>Circuit Diagram Speed Control of DC Motor</i>	744
9.2.9.2 <i>Line Follower Robot Using Microcontroller</i>	747
9.2.9.3 <i>Applications of Servomotor</i>	755
9.3 PROCESS FLOW OF STERILIZATION DEVICE	758
9.4 STRUCTURE DESIGN OF THE STERILIZER CONTROL SYSTEM	760
9.4.1 Transfer Function of Sterilization Temperature Control System	760
9.4.2 Subcontrol Systems of Sterilizer	761
9.4.3 Hardware Configuration of Sterilizer Control System	763
9.5 TRANSFER FUNCTIONS OF THE SUBCONTROL SYSTEMS	765
9.6 REALIZATION OF CONTROL ALGORITHM IN COMPUTER	770
9.7 TUNING FOR CONTROLLERS	771
 BIBLIOGRAPHY, 773	
 INDEX, 777	