
Contents

<i>About the Author</i>	xxv
<i>Preface</i>	xxvii
<i>Acknowledgements</i>	xxxii
<i>Preface to the first edition</i>	xxxiii
Chapter 1 Aims and overview – slopes, geology and materials	1
1.1 Introduction	1
1.2 Overview of recent developments and trends	1
1.2.1 Increasing frequency and impact of disasters from slope failures and landslides	1
1.2.2 Climate change, global warming and sea level rise	2
1.2.3 Built slopes – lessons from the catastrophic impacts of Hurricane Katrina	3
1.2.4 New developments related to slope analysis	4
1.2.5 Importance of probabilistic analysis	4
1.2.6 GIS-based methods and analyses	5
1.2.7 Assessments concerning very large landslides	5
1.2.8 Landslide frequency related to magnitude	6
1.2.9 Assessing regional landslide susceptibility and hazard	6
1.2.10 Development and use of slope stability software	7
1.2.11 Need to strengthen the fundamentals of geomechanics and slope analysis	7
1.3 Main aim and scope of this book	8
1.4 Aims of geotechnical slope analysis	9
1.5 Natural slopes – regional and site-specific analyses	10
1.6 Natural slopes – factors affecting stability	11
1.7 Built slopes, unreinforced and reinforced	15
1.7.1 Unreinforced slopes	15
1.7.2 Reinforced slopes	18
1.8 Geomorphology and slopes	19
1.9 Types of slope movement and landslides	21
1.9.1 Processes and types of slope movement	21
1.9.2 Pre-failure and post-failure movements	26
1.9.3 Failures of slopes in poorly compacted fill	27

1.9.4	Some observed data concerning magnitude of movements in soil and rock slopes	28
1.9.5	Rainfall as a triggering factor for slope failures or for the occurrence of landslides	29
1.9.6	Available methods for seepage analysis	31
1.10	Geology and slopes	32
1.10.1	Fabric	33
1.10.2	Geological structure	33
1.10.3	Geological structure and tendency of slope movement	34
1.10.4	Ground water	36
1.10.5	Seismic effects	37
1.10.6	Ground stresses or 'initial' stresses	38
1.10.7	Weathering	38
1.10.8	Previous landslide activity	38
1.11	The nature of soils	39
1.12	The nature of rocks	43
	Appendix to chapter 1	46
	Chapter 2 Basic geotechnical concepts	53
2.1	Introduction	53
2.2	Stress and strain	54
2.2.1	Elastic (recoverable) stresses and strains in soil and rock	54
2.2.2	Irrecoverable strains in soil and rock	56
2.3	The principle of effective stress in soil and rock	56
2.3.1	Saturated soil	56
2.3.2	Unsaturated soil	57
2.3.3	Different types and sources of pore water pressure	58
2.3.4	Reservoir filling and artesian pressures – an example, the 1963 Vajont slide	59
2.4	Shear strength of soils	60
2.4.1	Dry or saturated soils	60
2.4.2	Unsaturated soils	61
2.4.3	Slope failures involving unsaturated soil slopes	61
2.4.4	Factors influencing shear strength parameters	62
2.4.5	Measurement of shear strength under different drainage conditions	63
2.4.6	Peak, ultimate and residual shear strength	65
2.4.7	Factors influencing residual shear strength	66
2.4.8	Undrained strength of fissured clays	68
2.5	Mohr-Coulomb criterion in terms of principal stresses and stress path concept	69
2.5.1	Stress paths	69
2.5.2	Failure plane inclination and intermediate principal stress	71

2.5.3	Coulomb failure criterion for compression and extension tests	71
2.6	Shear strength of rocks	73
2.6.1	A rock mass as a discontinuum	73
2.6.2	Example of the importance of discontinuities in rock – the occurrence of catastrophic landslides	74
2.6.3	Griffith theory of rock fracture	74
2.6.4	Shear failure along rough discontinuity	75
2.6.5	Continuity of jointing and actual area of contact	77
2.6.6	Curved strength envelopes	78
2.6.7	Strength of filled discontinuities	79
2.6.8	Shear strength of closely jointed or fractured rock	79
2.6.9	Determination of shear strength	80
2.7	Plasticity and related concepts	82
2.8	Excess pore water pressures	86
2.9	Relationships between drained and undrained strength of cohesive soils	90
2.9.1	Unique $w-\bar{p}-q$ relationships at peak and ultimate strength	90
2.9.2	Undrained strength and pore pressure parameter at failure	91
2.9.3	Relative magnitude of drained and undrained strength	92
2.9.4	“ $\phi = 0$ ” concept	92
2.9.5	Anisotropy of shear strength	93
2.10	Progressive failure of slopes	95
2.11	Residual strength and other factors in progressive failure	98
2.12	Progressive failure and the stress field	102
2.13	Numerical examples	102
Chapter 3	Performance indicators and basic probability concepts	111
3.1	Introduction and scope	111
3.1.1	Preliminary decisions concerning type of analysis	111
3.1.2	Choice of performance indicators	111
3.1.3	Contents of this chapter	112
3.2	Deterministic approach	112
3.2.1	Global and local factors of safety	112
3.2.2	Critical seismic coefficient as alternative to factor of safety	113
3.2.3	Progressive failure and system aspects	113
3.2.4	Performance indicators for stress-deformation analyses	114
3.2.5	Threshold or allowable values of factor of safety	114
3.3	Probabilistic approach	116
3.3.1	Uncertainties and the probabilistic framework	116
3.3.2	Systematic uncertainties and natural variability of geotechnical parameters	116
3.4	Reliability index, probability of failure and probability of success (reliability)	117

3.5	Considering thresholds – minimum reliability index, maximum probability of failure	119
3.6	Spatial, temporal and system aspects	119
3.7	Susceptibility, hazard and risk	120
3.8	Further comments on geotechnical uncertainties	121
3.8.1	Introduction	121
3.8.2	Basic statistical parameters	121
3.8.3	Variability of soil properties and errors	122
3.9	Variance of F for simple slope problems	123
3.10	Using probabilistic analysis	124
3.10.1	Requirements and limitations: discussions during early phase of development	124
3.10.2	Example of a probabilistic slope study, De Mello (1977)	126
3.10.3	Errors and probability of failure, Wu and Kraft (1970)	126
Appendices to this chapter		128
Appendix I to chapter 3		128
C3I.1	Axioms and rules of probability	128
C3I.2	Conditional probability and statistical independence	129
C3I.3	Total probability and Bayes' theorem	132
C3I.4	Random variables and probability distributions	133
C3I.5	Moments of a random variable	138
C3I.6	The normal distribution	140
C3I.6.1	The standard normal variate	140
C3I.6.2	Application of standard normal variate	142
C3I.7	Logarithmic normal distribution	143
C3I.8	Joint distribution, covariance and correlation	144
C3I.9	Moments of functions of random variables	147
C3I.9.1	Sum of variates x_1, x_2 etc.	147
C3I.9.2	Product of independent variates x_1, x_2, x_3 , etc.	148
C3I.9.3	First order approximation for general functions	148
Appendix II to chapter 3		151
C3II.1	Equations for a capacity – demand model (after Harr, 1977)	151
C3II.1.1	Safety margin and factor of safety	151
C3II.1.2	Defining probability of failure and reliability	151
C3II.1.3	Probability of failure with normal distribution	153
C3II.1.4	Probability of failure with lognormal distribution	154
C3II.1.5	Safety margin required for given reliability	155
Appendix III to chapter 3		156
Chapter 4 Limit equilibrium methods I – planar failure surfaces		161
4.1	Introduction to limit equilibrium methods	161
4.1.1	Methods considered in chapters 4 and 5	161

4.1.2	Scope of limit equilibrium studies	161
4.1.3	The concept of slip surfaces	163
4.1.4	Defining factor of safety as per concept of limit equilibrium	164
4.1.5	Alternatives to conventional safety factor	166
4.1.6	Saturated and unsaturated soil slopes	167
4.2	Infinite slopes in cohesionless soils	170
4.2.1	Dry cohesionless soil	170
4.2.2	Submerged cohesionless soil	172
4.2.3	Cohesionless soil with seepage parallel to slope	173
4.2.4	Rapid drawdown of water level in a slope of cohesionless soil	174
4.3	Infinite slopes in cohesive soil	175
4.3.1	Seepage through a slope – simple cases	175
4.3.2	Rapid drawdown of water level in a slope of cohesive soil	178
4.4	Ultimate inclination of natural slopes	186
4.5	Vertical cuts in cohesive material	193
4.5.1	Unsupported height of a vertical cut and tension crack depth	193
4.5.2	Tension crack depth for use in stability analysis	196
4.6	Plane failure in rock slopes	197
4.7	Plane failure with water in tension crack	201
4.7.1	Conventional analysis	201
4.7.2	Alternative ways of defining F	203
4.8	Interpretation of strength data for use in stability calculations	204
4.9	Two-dimensional sliding along one of two joint sets	206
4.10	Continuity of jointing	207
4.11	Wedge method or sliding block method of two-dimensional analysis	208
4.11.1	Bi-planar slip surface	208
4.11.2	Tri-planar slip surface	210
4.12	Failure of three-dimensional wedge	211
4.13	Layered natural deposits and the effect of water pressure	213
4.13.1	Interbedded sand and clay layers	213
4.13.2	Interbedded sandstones and shales	216
4.14	Earth dams – plane failure analyses	217
4.14.1	Introduction	217
4.14.2	Simple sliding block analysis	218
4.14.3	Hydraulic fill dam	219
4.15	Slurry trench stability	220
4.15.1	Cohesionless soil	220
4.15.2	Cohesive soil – soft clay	222

Chapter 5 Limit equilibrium methods II – general slip surfaces and beyond critical equilibrium	223
5.1 Introduction and scope	223
5.1.1 Drainage conditions – choice between effective stress and total stress analysis	223
5.1.2 Shapes of slip surfaces	224
5.1.3 Estimating minimum factor of safety associated with a critical slip surface	225
5.1.4 Tension crack location and depth as part of optimisation process	226
5.1.5 Back analysis of failed slopes and landslides	227
5.1.6 The concept of a resistance envelope	230
5.2 Short-term stability of clay slopes	231
5.2.1 Slopes in soft clay – circular failure surfaces	231
5.2.2 Undrained strength of soft clay in relation to analysis (simple and advanced ‘total stress’ approaches)	234
5.2.3 Stiff clays	235
5.2.4 Proportion of fissures from back analysis	236
5.3 Friction circle method (c, ϕ soils)	237
5.4 Method of slices – Fellenius and Bishop simplified methods	240
5.4.1 Ordinary method of slices (Fellenius method)	240
5.4.2 Bishop simplified method	242
5.4.3 Convergence problems and possible numerical errors	244
5.4.4 Pore pressures and submergence	244
5.4.5 Effective stress charts and average pore pressure ratio	245
5.4.6 Inclusion of additional external forces such as soil reinforcement	246
5.5 Slip surfaces of arbitrary shape	247
5.5.1 Janbu’s generalised method	247
5.5.2 Convergence problems	249
5.5.3 Extended Janbu method (Zhang, 1989)	249
5.6 Other methods for general slip surfaces	255
5.6.1 Developments before 1978	255
5.6.2 Developments over the last three decades	257
5.6.3 Availability of geotechnical software for slopes	258
5.6.4 Non-vertical slices in limit equilibrium analysis	258
5.6.5 A variation of the method of slices and its application to the 1963 Vajont slide	259
5.7 Morgenstern and Price method	260
5.8 Simplified calculation and correction factor	264
5.9 Some early applications	265
5.10 Special analyses	266
5.10.1 Slope underlain by very weak soil layer such as soft clay	266

5.10.2	Considering calculated F in the context of the method of analysis	267
5.10.3	Clay slope underlain by water-bearing seam of fine sand	268
5.11	An early comparison of different limit equilibrium methods	269
5.12	Three-dimensional effects	271
5.12.1	Developments over the last four decades	271
5.12.2	Weighted average procedure	272
5.12.3	Inclusion of end effects	272
5.12.4	A general three-dimensional approach	273
5.12.5	Lateral curvature (curvature in plan) of a slope	275
5.12.6	Shape or curvature of slope profile or slope face	275
5.12.7	An example of 3D factor of safety calculations – analysis of the 1963 Vajont slide	276
5.13	'Total stress' versus 'effective stress' analyses	277
5.14	Choice and use of limit equilibrium methods – guidelines	280
5.14.1	Essential first steps	280
5.14.2	Choice of method of analysis	280
5.14.3	Sensitivity of calculated F	281
5.14.4	Sensitivity of F to tension cracks	282
5.14.5	The factor of safety in practice	284
5.14.6	Important considerations in all types of analysis	285
5.15	Variational calculus and slope stability	286
5.16	Simulating progressive failure within the framework of limit equilibrium – the effect of stress redistribution in slopes of strain-softening soil	289
5.16.1	Applications of the above procedure	290
5.17	Lessons from case studies of clay slopes	293
5.17.1	End-of-construction failures in clay	293
5.17.2	Long-term failures in intact clays, progressive failure and renewed movement	295
5.17.3	Long-term failures in fissured clays	298
5.17.4	Time to failure	300
5.18	Post-failure behaviour of landslides with particular reference to exceptional rockslides	302
5.18.1	Broad categories of landslides	303
5.18.2	Suggested mechanisms for exceptional landslides	305
5.18.3	Travel angle of landslides based on completed motion after detachment	306
5.19	Understanding ordinary slope failures beyond critical equilibrium	310
5.19.1	Stability to critical equilibrium and failure	310
5.19.2	The importance of very small movements of a failed but undetached mass	311

5.19.3	Estimating deformations	312
5.19.4	Rainfall-induced debris flow initiation	312
5.19.5	Methodology for analysing a rock avalanche	313
5.20	Improving slope stability	314
5.20.1	Introduction	314
5.20.2	Preliminary steps for slope improvement	314
5.20.3	Brief outline of some stabilisation methods	315
Appendix to chapter 5		319
C5.1	Slope analysis including anisotropy	319
C5.2	For ' $\phi = 0$ ' conditions	319
C5.3	For $\phi > 0$ cases	319
Chapter 6	Stress-deformation analyses and their role in slope analysis	321
6.1	Introduction	321
6.1.1	Range of advanced numerical methods for stress-deformation analysis	321
6.1.2	Need for stress-deformation analysis	323
6.1.3	Specific advantages of stress-deformation analyses	324
6.1.4	Beginnings of a numerical approach for embankment stress analysis	325
6.2	The finite element method	326
6.2.1	Basis of the method	326
6.2.2	Two-dimensional displacement formulation	328
6.2.3	Review of linear, non-linear and sophisticated models for FEM Solutions	331
6.2.4	Features of the simpler models: linear elastic, multi-linear elastic, hyperbolic elastic	331
6.2.5	Features of elastoplastic and viscoplastic models	332
6.2.6	General comments about all models	332
6.2.7	Range and complexity of data and parameters required for some sophisticated models	332
6.3	Material parameters for stress analysis	333
6.3.1	Isotropic parameters	334
6.3.2	Anisotropic parameters	334
6.3.3	Influence of deformation parameters on stresses and deformations	336
6.4	Incremental body force stresses	339
6.4.1	Embankment analysis in stages	339
6.4.2	Multi-stage excavation in linear and non-linear material	341
6.4.3	Simulation of excavation	341
6.5	Non-linear material behaviour and special problems	343
6.5.1	Introduction	343
6.5.2	Alternative approaches for non-linear problems	344
6.5.3	Equations based on hyperbolic response	346

6.5.4	Joints and discontinuities and interface elements	347
6.5.5	Incompressibility	348
6.5.6	Analysis of mining spoil pile stability (Richards et al., 1981; Richards, 1982)	349
6.6	Post excavation stresses	350
6.7	Computed stresses and safety factor	353
6.8	Modelling progressive failure in slopes of strain-softening soil	357
6.8.1	Brief overview of available methods	357
6.8.2	Overstressed elements in a slope and calculating excess shear stress	358
6.8.3	Iterative FEM analyses in strain-softening soil	359
6.9	Changes in water table and pore pressures	361
6.10	Limit equilibrium analysis with known failure zone	362
Chapter 7	Natural slope analysis considering initial stresses	363
7.1	Introduction	363
7.1.1	Importance of in-situ stresses	363
7.1.2	Magnitude and measurement of in-situ stresses	364
7.2	Relationship between K_0 , shear strength and pore pressure coefficients	365
7.3	Estimating K_0 from the back analysis of a failed slope	368
7.4	Initial stresses in sloping ground	370
7.5	Limiting values of K	374
7.6	Stresses on any plane	376
7.7	The concept of inherent stability	376
7.8	Planar failure	377
7.9	Ultimate stable angle of natural slopes	380
7.10	Bi-planar surfaces of sliding	381
7.11	Potential slip surface of arbitrary shape	383
7.12	Example – circular failure surface	384
7.13	Simulating progressive change in stability	385
7.13.1	The simulation process	385
7.13.2	Defining an overall factor of safety at any stage	387
7.13.3	Change in stability considering two alternative modes of progression	387
7.13.4	An alternative method for simulation of progressive change in the stability of an idealized embankment	388
7.14	Application to altered slopes	389
7.15	Rock-slide at the site of the vaiont dam and a summary of some analyses carried out after its occurrence	390
7.15.1	Unusual nature of the catastrophic landslide	390
7.15.2	Back-calculated shear strength based on critical equilibrium	391
7.15.3	Shear strength of rock materials	392

7.15.4	Pore water pressure assumptions	393
7.16	Simulation of progressive failure based on initial stress approach (Chowdhury, 1978a)	393
7.16.1	Assumption of a reasonable initial stress field	393
7.16.2	Estimation of factors of safety	393
7.16.3	Approximate estimation of accelerations	395
7.16.4	Approximate estimation of velocities	396
7.16.5	Supporting comments	396
7.16.6	Conclusion	397
7.17	An alternative approach for analysis of the vaiont slide (Hendron and Patton, 1985)	397
7.17.1	Introduction	397
7.17.2	2-D static analyses	398
7.17.3	3-D static analyses	398
7.17.4	Analyses for the dynamics of the landslide	399
7.18	Final comment on the two alternative explanations	399
7.18.1	Approach based on initial stress field and simulation of progressive failure	399
7.18.2	Approach based on assumed high artesian pressures and heat-generated pore water pressures	400
Chapter 8 Plasticity and shear band analyses – a brief review		403
8.1	Plasticity	403
8.1.1	Introduction	403
8.1.2	Scope	404
8.1.3	Material idealisation and types of solutions	404
8.2	Classical analyses	405
8.2.1	Introduction	405
8.2.2	Critical profile of a slope with loading on the crest	405
8.2.3	Finding the non-uniform surcharge for a uniform slope of given critical inclination	407
8.2.4	Slopes curved in plan	408
8.2.5	Uniform slope of soil in which shear strength increases with depth	408
8.3	Limit analysis	411
8.3.1	Upper and lower bound theorems	411
8.3.2	Example-a vertical slope	411
8.3.3	Lower bound solution	413
8.3.4	Scope of solutions for general cases	414
8.3.5	Extension of solutions to more realistic or complex problems	415
8.3.6	Possible future extension to modeling of progressive failure	416
8.3.7	Extension of upper bound method	416

8.4	Plasticity solution by finite elements	417
8.4.1	Introduction	417
8.4.2	Strength reduction technique	417
8.4.3	Non-homogeneous slopes and realistic material behaviour	418
8.4.4	Simple and advanced soil models	418
8.4.5	A slope in homogeneous soil resting on a rough base	419
8.5	Shear band concept	419
8.5.1	Questions relevant to formation and significance of shear bands or slip surfaces	419
8.5.2	Some relevant applications reported in the literature	420
8.5.3	Cases in which internal deformations of soil mass must be considered	420
8.6	Palmer and Rice approach – the shear box problem	421
8.6.1	Introduction	421
8.6.2	Energy balance equation	421
8.7	Long shear box and infinite slope	422
8.7.1	Long shear box	422
8.7.2	Long slope with a step or cut	423
8.8	Non-uniform shear stress on band	425
8.8.1	Introduction	425
8.8.2	Long shear box	425
8.8.3	Long slope with step or cut	427
8.8.4	Relatively flat slope – gravitational stress less than residual strength	427
8.9	Shear band of arbitrary inclination (after Chowdhury, 1978b)	428
8.9.1	Introduction	428
8.9.2	Considering the energy balance	429
8.9.3	The propagation criterion	430
8.9.4	Results for an example case	431
8.10	Rate of propagation	431
8.11	A simple progressive failure model	432
8.12	Application of shear band concepts	433
	Appendix to chapter 8	435
	C8.1 Slope studies for anisotropic soil	435
	Chapter 9 Earthquake effects and seismic slope analysis	437
9.1	Seismic slope stability and deformations – an introduction	437
9.1.1	Aims and scope	437
9.1.2	Introducing pseudo-static analysis	438
9.1.3	Critical seismic coefficient (or yield value of seismic coefficient)	440
9.1.4	Introducing Newmark approach of sliding block analysis	440

9.1.5	Three stages of change in stability and permanent deformation	442
9.2	Soil behaviour under cyclic loading conditions	443
9.2.1	Introduction	443
9.2.2	Cyclic shear strength from laboratory tests	444
9.2.3	Field tests and model tests	444
9.2.4	Shear strength parameters for seismic slope analysis	445
9.2.5	Rate effects on the shear strength along existing slip surfaces	445
9.3	Seismically-induced soil liquefaction and residual strength of cohesionless soil	446
9.3.1	Seismic liquefaction phenomena	446
9.3.2	Liquefaction-related strains and deformations	446
9.3.3	Undrained residual shear strength	447
9.3.4	Flow liquefaction contrasted with cyclic mobility	449
9.4	Pseudo-static analysis	449
9.4.1	Planar slip surfaces	449
9.4.2	Circular slip surface in saturated soil slope	451
9.4.3	Slip surfaces of arbitrary shape	452
9.4.4	Seismic coefficient and factor of safety for pseudo-static analysis	452
9.4.5	Beyond pseudo-static analysis	454
9.5	Critical seismic coefficient	454
9.5.1	Introduction – the range of methods and solutions	454
9.5.2	Critical seismic coefficient for slip surfaces of planar or log spiral shapes	455
9.5.3	Critical seismic coefficient for circular slip surface	456
9.5.4	Critical seismic coefficient for homogeneous slope considering slip surface of arbitrary shape	456
9.6	Sliding block solution for permanent displacements	458
9.6.1	The Newmark approach	458
9.6.2	Typical estimated values of seismic displacement	460
9.6.3	Considering variable critical seismic coefficient	461
9.7	Empirical/regression equations for permanent displacements	462
9.7.1	Introduction and scope of equations from regression analysis	462
9.7.2	An equation based on (i) the ratio of critical seismic coefficient and peak ground acceleration coefficient and (ii) the predominant period	463
9.7.3	An equation based only on the ratio of critical seismic coefficient and peak ground acceleration coefficient	464

9.7.4	An equation based on Arias intensity and critical seismic acceleration	464
9.7.5	Seismic Destructiveness Potential Factor and its use in numerical analyses	464
9.8	Dynamic analyses	465
9.8.1	Introduction	465
9.8.2	Basic concepts and equations	466
9.8.3	Example of analyses for a failed dam	467
9.8.4	Other procedures developed and used in the 1970s	468
9.8.5	The Seed-Lee-Idriss procedure for dams or embankments which include saturated cohesionless materials	469
9.8.6	Analysis of Lower San Fernando Dam – Seed's approach	471
9.8.7	Alternative explanation for failure of Lower San Fernando Dam	473
9.8.8	Effective stress approach for analysis of Lower San Fernando Dam	474
9.9	Occurrence of earthquake-induced landslides	477
9.9.1	Landslides related to some major earthquakes – key findings	477
9.9.2	Some empirical relationships between earthquake magnitude M , landslide volume V , and landslide area A	478
9.9.3	Summary of a subsequent study (Keefer, 2007)	479
9.9.4	Topographic amplification effects	480
9.10	Effect of earthquakes on earth dams and embankments	481
9.10.1	Examples of dams that failed during earthquakes	481
9.10.2	Example of a dam surviving a strong earthquake	482
9.10.3	Failure modes and earthquake resistant design	484
9.11	Role of probabilistic analysis	485
9.11.1	Numerous uncertainties	485
9.11.2	Probability of failure conditional on earthquake occurrence	485
9.11.3	Probability of failure over the design life of a slope	486
9.11.4	Estimating annual probability of earthquake occurrence	486
9.11.5	Probability of landsliding based on observation and calculated values	486
9.11.6	Increase in existing landslide hazard due to earthquakes	488
	Appendix to chapter 9	489
C9.1	Some discussions during the period (1960–1973) concerning the seismic coefficients	489
C9.1.1	Factors influencing pseudo-static factor of safety	489
C9.1.2	Estimating seismic coefficient based on visco-elastic response analysis	490
C9.1.3	Seismic coefficients related to inertia forces	490

Chapter 10 Probabilistic approaches and reliability analyses	493
10.1 Basic probabilistic approach for slopes	493
10.1.1 Introduction	493
10.1.2 Numerical examples	495
10.1.3 Aspects of probabilistic analysis covered in published work – a sample	501
10.2 Elements of a basic probabilistic approach	502
10.2.1 Recalling the basic resistance – load probability model	502
10.2.2 Probabilistic approach based on general limit equilibrium models of slope stability	502
10.2.3 Probability distribution of a function of several variables such as the factor of safety, F	503
10.3 The big picture – role and benefits of a probabilistic approach	503
10.4 Numerical methods for evaluating statistical moments of factor of safety or for simulating its probability distribution	508
10.4.1 First Order Second Moment Method (FOSM)	508
10.4.2 Point Estimate Method or Rosenblueth method (PEM)	510
10.4.3 Monte-Carlo Simulation Method (MSM)	511
10.4.4 Summing up – comparison of results from use of different methods	511
10.5 Essential questions and elementary calculations for probabilistic analysis	512
10.5.1 Select random variables: which parameters are significant?	512
10.5.2 Statistical moments of F : which numerical methods are to be used?	513
10.5.3 Alternative definition of reliability index: is a simple definition of reliability index good enough?	513
10.5.4 Meaning of probability of failure as usually defined	514
10.5.5 Options for evaluating probability of failure based on the assumption that F follows a normal probability distribution	514
10.5.6 Probability distribution of F : which PDF to assume for F , Normal or Lognormal?	515
10.5.7 Probability of failure based on Lognormal distribution	515
10.5.8 Estimating standard deviations of basic variables	516
10.5.9 Final comment	517
10.6 Uncertainty components and issues for uncertainty analysis	517
10.6.1 Introduction	517
10.6.2 Spatial variation of a geotechnical parameter	518
10.6.3 Length of slope failure – insight provided by spatial variability	519
10.6.4 Systematic uncertainty of a geotechnical parameter	520
10.6.5 Summing up	521

10.7	Probability of successive failures	521
10.7.1	Introduction	521
10.7.2	Formulation in terms of safety margins along two discontinuities within a slope	522
10.7.3	Joint normal distribution	524
10.7.4	Trend of results for probability of successive failure along rock discontinuities	525
10.7.5	Trend of results for probability of successive failures in a soil slope	526
10.8	Systems reliability	527
10.9	Probability of progressive failure along a slip surface	528
10.9.1	Basic model considering local safety margins	528
10.9.2	Advanced model for probability of sliding by progressive failure	529
10.9.3	Further development of the model for probability of sliding by progressive failure	533
10.10	Simulation of sliding probability of a progressively failing slope	533
10.11	Bayesian updating	535
10.11.1	Introduction	535
10.11.2	Updating the reliability of an open-cut mining slope	536
10.11.3	Back-analysis through reliability updating	536
10.12	Reliability analysis for a three-dimensional slope problem	537
10.13	Target failure probabilities	540
10.13.1	Introduction	540
10.13.2	Suggested target values of reliability index and failure probability for slopes	541
10.13.3	Discussion and limitations	542
10.14	Hazard and risk concepts and site-specific assessments	543
10.14.1	The basic terminology	543
10.14.2	Types of risk and risk assessments	545
10.14.3	Acceptable or tolerable risk levels	546
10.14.4	Calculations and simple examples concerning risk	547
10.15	Regional assessment of hazard and risk	550
10.15.1	Introduction	550
10.15.2	Purpose	550
10.15.3	Key assumptions in regional studies	551
10.15.4	Defining the scope	551
10.15.5	Qualitative and quantitative approaches for regional analysis	552
10.15.6	Role of an observational approach – monitoring of slopes and landslides	553
10.16	Additional numerical examples	554
	Appendix to chapter 10	583

Chapter 11 Case studies of urban slope stability	587
11.1 Aims of this chapter	587
11.2 Regional perspective	588
11.3 Landslide inventory	591
11.4 Stability analyses of three sites	593
11.4.1 Introduction	593
11.4.2 Available information and assumptions	594
11.4.3 Failure mechanism	594
11.4.4 Drainage conditions	595
11.4.5 Observed shapes of landslides and slip surfaces	595
11.4.6 Software used for the Case Studies	596
11.5 Case study 1 – Site 64 in the suburb of Scarborough	596
11.5.1 Introduction	596
11.5.2 Background	596
11.5.3 Geotechnical model for Site 64	598
11.5.4 Pore water pressure assumptions	598
11.5.5 Results of analysis	602
11.5.6 Shear strength at failure on the basis of the above analyses	602
11.6 Case study 2 – Site 77, Morrison Avenue, Wombarra	603
11.6.1 Introduction	603
11.6.2 Background	604
11.6.3 Geotechnical model for Site 77	605
11.6.4 Pore water pressure assumptions	607
11.6.5 Results of analyses	607
11.6.6 Shear strength at failure based on results of analyses	608
11.7 Case study 3 – Site 134, Woonona Heights	609
11.7.1 Introduction	609
11.7.2 Background	612
11.7.3 Geotechnical model for Site 134	613
11.7.4 Pore water pressure assumptions	614
11.7.5 Results of analyses	614
11.8 Concluding remarks on the three case studies	615
11.9 Landslide-triggering rainfall	616
11.9.1 Rainfall as triggering factor – threshold and variability	616
11.9.2 Analyses of the 1998 rainstorm and associated landsliding	617
11.10 Landslide susceptibility and hazard	620
11.10.1 Introduction and scope	620
11.10.2 Regional risk assessment outside the scope of this chapter	620
11.10.3 Data-sets relevant to the study area	621

11.10.4	Knowledge based approach and Data Mining (DM) model	621
11.10.5	Analysis of DM results and landslide susceptibility zoning	622
11.10.6	Landslide hazard assessment and zoning	625
11.11	Observational approach and monitoring	626
11.11.1	Introduction and definition	626
11.11.2	Why an observational approach?	628
11.11.3	Example of landslide management based on monitoring	628
11.11.4	Field monitoring – periodic	629
11.11.5	Field monitoring – continuous	631
11.12	Concluding remarks	633
Chapter 12 Summing up		635
12.1	Introduction and brief overview	635
12.2	Seeking emerging themes	636
12.3	Geotechnical slope analysis in a regional context	637
12.4	Choice between conventional and advanced methods of analysis	638
12.5	Understanding and modelling important phenomena	639
12.6	Appropriate use of probabilistic analysis	640
12.7	Observational approach	642
12.8	Meeting emerging challenges	643
12.9	Concluding remarks	644
Appendix I Shear strength parameters of residual soils, weathered rocks and related minerals		645
Appendix II Slope stability charts and their use for different conditions including rapid draw down		649
AII.1	Chart for parameter m_α in Bishop simplified method (also Janbu's method)	649
AII.2	Introduction to slope stability charts	650
AII.3	Taylor's charts and their use	651
AII.3.1	Special conditions considered by Taylor (1948)	653
AII.4	Cousins' (1977) charts – studies in terms of effective stress	654
AII.5	Example concerning use of cousins' charts	661
AII.6	Charts by Hoek (1970) and Hoek and Bray (1974, 1977)	666
AII.7	Rapid draw down-effective stress approach (after Bishop, 1954 and Skempton, 1954)	668
AII.8	Construction pore pressures in impervious fill of earth dam (after Bishop, 1954)	674

Appendix III Morgenstern and Price approach – some additional particulars	677
AIII.1 Side force assumptions	677
AIII.2 Admissibility criteria for Morgenstern and Price solution	679
AIII.3 Typical comparisons	681
AIII.3.1 Brilliant cut slide	681
AIII.3.2 Navdocks example problem	681
AIII.4 Conclusions	681
<i>References</i>	683
<i>Permissions</i>	713
<i>Subject index</i>	715
<i>Colour plates</i>	721