
Contents

Preface**xi**

Part I	1	
1	Introduction – uncertainty and risk in geotechnical engineering	3
1.1	Offshore platforms	4
1.2	Pit mine slopes	11
1.3	Balancing risk and reliability in a geotechnical design	13
1.4	Historical development of reliability methods in civil engineering	14
1.5	Some terminological and philosophical issues	15
1.6	The organization of this book	17
1.7	A comment on notation and nomenclature	17
2	Uncertainty	19
2.1	Randomness, uncertainty, and the world	19
2.2	Modeling uncertainties in risk and reliability analysis	23
2.3	Probability	26
3	Probability	35
3.1	Histograms and frequency diagrams	35
3.2	Summary statistics	38
3.3	Probability theory	41
3.4	Random variables	44
3.5	Random process models	48
3.6	Fitting mathematical pdf models to data	56
3.7	Covariance among variables	60
4	Inference	65
4.1	Frequentist theory	65
4.2	Bayesian theory	69
4.3	Prior probabilities	73
4.4	Inferences from sampling	78
4.5	Regression analysis	83
4.6	Hypothesis tests	88
4.7	Choice among models	95

5	Risk, decisions and judgment	97
5.1	Risk	97
5.2	Optimizing decisions	106
5.3	Non-optimizing decisions	118
5.4	Engineering judgment	121
	Part II	127
6	Site characterization	129
6.1	Developments in site characterization	129
6.2	Analytical approaches to site characterization	131
6.3	Modeling site characterization activities	135
6.4	Some pitfalls of intuitive data evaluation	138
6.5	Organization of Part II	143
7	Classification and mapping	145
7.1	Mapping discrete variables	146
7.2	Classification	147
7.3	Discriminant analysis	153
7.4	Mapping	168
7.5	Carrying out a discriminant or logistic analysis	173
8	Soil variability	177
8.1	Soil properties	180
8.2	Index tests and classification of soils	183
8.3	Consolidation properties	187
8.4	Permeability	189
8.5	Strength properties	191
8.6	Distributional properties	194
8.7	Measurement error	201
9	Spatial variability within homogeneous deposits	205
9.1	Trends and variations about trends	205
9.2	Residual variations	214
9.3	Estimating autocorrelation and autocovariance	228
9.4	Variograms and geostatistics	239
	Appendix: algorithm for maximizing log-likelihood of autocovariance	241
10	Random field theory	243
10.1	Stationary processes	243
10.2	Mathematical properties of autocovariance functions	246
10.3	Multivariate (vector) random fields	248
10.4	Gaussian random fields	249
10.5	Functions of random fields	249
11	Spatial sampling	257
11.1	Concepts of sampling	257
11.2	Common spatial sampling plans	258

11.3 Interpolating random fields	264
11.4 Sampling for autocorrelation	268
12 Search theory	273
12.1 Brief history of search theory	273
12.2 Logic of a search process	275
12.3 Single stage search	279
12.4 Grid search	280
12.5 Inferring target characteristics	286
12.6 Optimal search	290
12.7 Sequential search	298
Part III	301
13 Reliability analysis and error propagation	303
13.1 Loads, resistances and reliability	303
13.2 Results for different distributions of the performance function	306
13.3 Steps and approximations in reliability analysis	310
13.4 Error propagation – statistical moments of the performance function	311
13.5 Solution techniques for practical cases	318
13.6 A simple conceptual model of practical significance	319
14 First order second moment (FOSM) methods	323
14.1 The James Bay dikes	324
14.2 Uncertainty in geotechnical parameters	325
14.3 FOSM calculations	327
14.4 Extrapolations and consequences	337
14.5 Conclusions from the James Bay study	340
14.6 Final comments	342
15 Point estimate methods	345
15.1 Mathematical background	345
15.2 Rosenblueth's cases and notation	347
15.3 Numerical results for simple cases	351
15.4 Relation to orthogonal polynomial quadrature	353
15.5 Relation with 'Gauss points' in the finite element method	355
15.6 Limitations of orthogonal polynomial quadrature	357
15.7 Accuracy, or when to use the point-estimate method	358
15.8 The problem of the number of computation points	364
15.9 Final comments and conclusions	376
16 The Hasofer–Lind approach (FORM)	377
16.1 Justification for improvement – vertical cut in cohesive soil	377
16.2 The Hasofer–Lind formulation	380
16.3 Linear or non-linear failure criteria and uncorrelated variables	384
16.4 Higher order reliability	391

16.5 Correlated variables	393
16.6 Non-normal variables	395
17 Monte Carlo simulation methods	399
17.1 Basic considerations	399
17.2 Computer programming considerations	404
17.3 Simulation of random processes	410
17.4 Variance reduction methods	414
17.5 Summary	430
18 Load and resistance factor design	433
18.1 Limit state design and code development	433
18.2 Load and resistance factor design	436
18.3 Foundation design based on LRFD	444
18.4 Concluding remarks	455
19 Stochastic finite elements	457
19.1 Elementary finite element issues	457
19.2 Correlated properties	461
19.3 Explicit formulation	465
19.4 Monte Carlo study of differential settlement	468
19.5 Summary and conclusions	469
Part IV	471
20 Event tree analysis	473
20.1 Systems failure	473
20.2 Influence diagrams	482
20.3 Constructing event trees	488
20.4 Branch probabilities	493
20.5 Levee example revisited	500
21 Expert opinion	501
21.1 Expert opinion in geotechnical practice	501
21.2 How do people estimate subjective probabilities?	502
21.3 How well do people estimate subjective probabilities?	503
21.4 Can people learn to be well-calibrated?	508
21.5 Protocol for assessing subjective probabilities	509
21.6 Conducting a process to elicit quantified judgment	509
21.7 Practical suggestions and techniques	521
21.8 Summary	522
22 System reliability assessment	523
22.1 Concepts of system reliability	523
22.2 Dependencies among component failures	524
22.3 Event tree representations	525
22.4 Fault tree representations	529

22.5 Simulation approach to system reliability	534
22.6 Combined approaches	538
22.7 Summary	554
Appendix A: A primer on probability theory	555
A.1 Notation and axioms	555
A.2 Elementary results	555
A.3 Total probability and Bayes' theorem	557
A.4 Discrete distributions	558
A.5 Continuous distributions	562
A.6 Multiple variables	563
A.7 Functions of random variables	566
References	569
Index	593