

CONTENTS

CHAPTER 1

INTRODUCTION

1.1	General	1
1.2	Objectives and Scope of Work	3
1.3	Organization of Thesis	6

CHAPTER 2

LITERATURE REVIEW

2.1	Introduction	9
2.2	Site Characterization	9
2.3	Liquefaction	12
2.4	Correlation Between SPT, CPT and MASW	20
2.5	Concluding Remarks	23

CHAPTER 3

GEOSTATISTICS, ARTFICIAL NEURAL NETWORK AND SUPPORT

VECTOR MACHINE MODELS

3.1	Introduction	25
3.2	Geostatistical Model Based on Kriging	25
3.2.1	Simple Kriging	26
3.2.2	Ordinary Kriging	28
3.2.3	Disjunctive Kriging	30
3.3	Artificial Neural Network	33

3.3.1	Backpropagation Neural Network Model	33
3.3.2	Generalized Regression Neural Network Model	35
3.4	Support Vector Machine Model	37
3.5	Support Vector Machine Model for Regression	44
3.6	Concluding Remarks	52

CHAPTER 4

SITE CHARACTERIZATION USING INTELLIGENT MODELS

4.1	Introduction	53
4.2	Study Area	54
4.3	Geotechnical Data	55
4.4	Intelligent Models for Prediction N_c Values	63
4.4.1	Simple Kriging (SK) Model	63
4.4.2	Ordinary Kriging (OK) Model	67
4.4.3	Disjunctive kriging (DK) Model	70
4.4.4	Cross-Validation of the Developed SK, OK and DK Models	77
4.4.5	Comparison Between Developed SK, OK and DK Models	82
4.4.6	ANN Backpropagation (BP) Model	85
4.4.7	ANN Generalized Regression Neural Network (GRNN) Model	90
4.4.8	Support Vector Regression (SVR) Model	91
4.4.9	Comparison between Geostatistical, ANN and SVR Models	101
4.5	Concluding Remarks	103

CHAPTER 5

EVALUATION OF LIQUEFACTION SUSCEPTIBILITY USING INTELLIGENT MODELS

5.1	Introduction	104
5.2	Methodology	105
5.3	ANN Model Based on SPT 'N' Values	106
5.4	SVM Model Based on SPT 'N' Values	127
5.5	ANN Model Based on CPT 'q _c ' Values	151
5.6	SVM Model Based on CPT 'q _c ' Values	166
5.7	ANN Model Based on Shear Wave Velocity 'V _s ' Values	182
5.8.	SVM Model Based on Shear Wave Velocity 'V _s ' Values	201
5.9	Comparisons of ANN and SVM Models	219
5.10	Concluding Remarks	222

CHAPTER 6

IN-SITU TESTING METHODS AND THEIR COMPARISON

6.1	Introduction	223
6.2	Field Test Program	224
6.3.1	General Description of Site	224
6.3.2	SPT Tests	225
6.3.3	CPT Tests	231
6.3.4	MASW Tests	235
6.4	SPT-CPT-MASW Correlations	238
6.5	Evaluation of Liquefaction Susceptibility	242

6.5.1	“Idriss and Boulanger” (2004) Approach	242
6.5.2	Intelligent Models	244
6.6	Concluding Remarks	250

CHAPTER 7

OCR PREDICTION USING SUPPORT VECTOR MACHINE MODEL BASED ON PIEZOCONE DATA

7.1	Introduction	251
7.2	SVM Implementation for OCR Prediction	252
7.3	Sensitivity Analysis	254
7.4	Results and Discussion	255
7.5	Concluding Remarks	263

CHAPTER 8

SUMMARY AND CONCLUSIONS

8.1	Summary	264
8.2	Conclusions	267
8.3	Recommendation for Further Research	269

APPENDIX A

SPATIAL VARIABILITY OF ROCK DEPTH IN BANGALORE USING INTELLIGENT MODELS

A.1	Introduction	270
A.2	Models Developed	271
A.3	Results and Discussion	272
A.3.1	Kriging Models	272

A.3.2 SVM Model	275
-----------------	-----

A.4 Concluding Remarks	283
------------------------	-----

APPENDIX B

DEVELOPMENT OF PIEZOVIBROCONE AND CALIBRATION CHAMBER

B.1 Introduction	284
B.2 Development of a Piezovibrocone and Calibration Chamber	284
B.3 Piezovibrocone	286
B.4 Calibration Chamber	290
B.5 Calibration Chamber Testing	291
B.6 Test Results	295
B.7 Concluding Remarks	305

APPENDIX C

COMPARISON BETWEEN ACTUAL N_c AND PREDICTED N_c BY SVR FOR

TESTING	306
---------	-----

APPENDIX D

SAMPLE CALCULATION USING BP-ANN MODEL FOR PREDICTING N_c

VALUES IN BANGALORE	310
---------------------	-----

APPENDIX E

FLOW CHARTS OF SVM MODEL	313
--------------------------	-----

REFERENCES	315
------------	-----