

Contents

Preface	VIII
1 Introduction	1
1.1 Motivation and scope	1
1.2 Objectives	3
1.3 Hybrid modeling tools: Neuro-fuzzy and soft computing	3
1.4 General contribution of the research	6
1.5 Outline	6
2 Rule-based fuzzy modeling framework	8
2.1 Introduction	8
2.2 Background of fuzzy sets	9
2.2.1 Interpretation and representation of fuzzy sets: membership functions	11
2.2.2 Derivation and learning of membership functions	12
2.3 Fuzzy logic and approximate reasoning	16
2.3.1 Fuzzy logic	16
2.3.2 Rule base properties	20
2.4 Fuzzy models: fuzzy systems	20
2.5 Fuzzy modeling algorithms	22
2.5.1 The Mamdani fuzzy algorithm	23
2.5.2 Defuzzification methods	26
2.5.3 Takagi-Sugeno-Kang fuzzy algorithm	27
2.5.4 Singleton fuzzy model	28
2.6 Fuzzy clustering models	29
2.6.1 Data clustering	29
2.6.2 Product-space fuzzy clustering modeling	31
2.7 Stages building a fuzzy model	33
2.8 Example: spatial interpolation approach using fuzzy clustering and fuzzy modeling concepts	34
2.9 Concluding remarks	37
3 Combined neuro-fuzzy modeling framework	38
3.1 Introduction	38
3.2 Different neural net modeling tools	39
3.3 Multi-layer (feed-forward) neural nets	40
3.3.1 Back-propagation learning algorithm-the generalized delta rule	41
3.3.2 Improving generalization capability of neural networks	44

3.3.3 Levenberg-Marquardt learning algorithm	45
3.3.4 Methods aiming at variable reduction and neural net transparency	46
3.3.5 Radial basis function networks	48
3.4 Self-organizing maps and learning vector quantization	49
3.4.1 Self-organizing map	49
3.4.2 Learning vector quantization	51
3.5 Fuzzy models and neural net models: neuro-fuzzy approaches	53
3.5.1 Different types of neuro-fuzzy models	54
3.5.2 Adaptive neuro-fuzzy inference system model: ANFIS	55
3.5.3 Maintaining the semantic aspects of neuro-fuzzy models	60
3.6 Concluding remarks	60
4 Fuzzy modeling of rock cutting trencher performance	61
4.1 Introduction	61
4.2 Field investigations on the performance of rock cutting trenchers	62
4.2.1 Field studies	63
4.2.2 The T-850 trencher	63
4.2.3 In-situ trenching monitoring and data acquisition	63
4.2.4 Observation and analysis of the results on trencher performance	68
4.3 Knowledge-based fuzzy model for the prediction of rock cutting trencher performance	80
4.3.1 Fuzzy model of the tool consumption and excavation rate	81
4.3.2 Translation of expert knowledge into fuzzy if-then rules	93
4.3.3 Results and validation of the fuzzy model	95
4.4 Conclusions	99
5 Neuro-fuzzy modeling of tunnel boring machine performance	100
5.1 Introduction	100
5.2 Literature review of important parameters influencing the performance of TBM	101
5.2.1 Definition of penetration rate	101
5.2.2 Definition of cutter wear	108
5.2.3 Stability and support requirement of bored tunnels	111
5.2.4 Definition of utilization	113
5.2.5 Activities related to the utilization of a TBM	114
5.3 Description and analysis of the data base	115
5.3.1 Structure of the data base	115
5.3.2 Description of the parameters in level 1 and 2 data base	116
5.3.3 Analysis and interpretation of the parameters reported in the data base	117
5.3.4 Summary of the modeling parameters influencing the TBM performance	127
5.4 Neuro-fuzzy modeling for the penetration rate model	129
5.4.1 Data-preprocessing and data handling	131
5.4.2 Model complexity reduction: principal component analysis	131
5.4.3 Preliminary modeling attempts	134
5.4.4 Successive neuro-fuzzy modeling	136
5.4.5 Selection of the most plausible model	142
5.4.6 Criteria used for selecting the final model	145
5.4.7 Comparison of the penetration rate model with statistical and empirical-based models	147
5.5 Conclusions	156
6 Fuzzy clustering model for the prediction of the unconfined compressive strength of rock samples	158

6.1	Introduction	158
6.2	Rock sample data	159
6.3	The Equotip hardness tester	159
6.4	The Takagi-Sugeno (TS) fuzzy model	161
6.4.1	Fuzzy clustering model	161
6.5	Takagi-Sugeno fuzzy model for the prediction of the UCS	163
6.5.1	Structure of the TS fuzzy model	163
6.5.2	Rules and membership functions in the fuzzy model	163
6.5.3	Rule consequents	166
6.5.4	Results and validation of the TS fuzzy model	166
6.6	Comparison of the TS fuzzy model with a multilinear statistical model	167
6.7	Neural net model for the prediction of the UCS of rock samples	171
6.7.1	Training a network with Back-propagation (Levenberg-Marquardt algorithm)	171
6.7.2	Network architecture: topology	171
6.7.3	Relative strength estimation of the input parameters	173
6.7.4	Network UCS predictions	176
6.7.5	Comparison of the TS fuzzy model with a NN model	177
6.8	Conclusions	178
7	Neural network-based approach for geological mapping using geophysical data	179
7.1	Introduction	179
7.2	Location and geological setting of the study area	181
7.3	Geology and tectonics of the study area	181
7.3.1	Geology of the Guaniganico tectonic unit	183
7.4	Data sets	185
7.5	Geophysical data processing	186
7.5.1	Generation of gravity grid	187
7.5.2	Micro-leveling of Aeromagnetic data	187
7.5.3	Spectral analysis	187
7.5.4	Raster images	187
7.5.5	High frequency images	189
7.5.6	Residual images	192
7.5.7	Potential field modeling	192
7.5.8	Airborne Gamma-ray spectrometry data	194
7.6	Geophysical data interpretation	195
7.7	Neural net-based approach for the construction of geological mapping using geophysical data	196
7.7.1	Variable selection	197
7.7.2	Comparative analysis of the neural net results and the geological map	201
7.8	Conclusions	205
8	Conclusions and suggestions for further research	207
8.1	Conclusions	207
8.2	Suggestions for further research	210
	Appendix A: Fuzzy set theory: basic definitions and mathematical notations	211
	References	220
	Notations	232
	Author index	235
	Subject index	239