

Table of contents

Preface	XIII
Organization	XV
<i>Special lecture</i>	
Flow-type failure of slopes based on behavior of anisotropically consolidated sand <i>K.Ishihara, Y.Tsukamoto & S.Nakayama</i>	3
<i>Keynote lectures</i>	
The limit analysis for slopes: Theory, methods and applications <i>Z.Chen</i>	15
Using limit equilibrium concepts in finite element slope stability analysis <i>D.G.Fredlund & R.E.G.Scoular</i>	31
Stability of geosynthetic reinforced steep slopes <i>D.Leshchinsky</i>	49
The mechanisms, causes and remediation of cliff instability on the western coast of the Black Sea <i>M.Popescu</i>	67
Design of slope stabilizing piles <i>H.G.Poulos</i>	83
<i>1 Geological and geotechnical site investigations</i>	
Geoenvironmental factors influencing the deterioration of shale in a rockslope <i>A.M.Elleboudy</i>	103
Weathering mechanism and slope failures of granitic rocks in Southwest Japan – Effect of hydrothermal activities <i>R.Kitagawa</i>	109
Site investigation of weathered expansive mudrock slopes: Implications for slope instability and slope stabilization <i>R.J.Maharaj</i>	115

Investigation of cut slope consisting of serpentinite and schist <i>H.Kitamura, M.Aoki, T.Nishikawa, T.Yamamoto, M.Suzuki & T.Umezaki</i>	121
Using multibeam sonar surveys for submarine landslide investigations <i>J.Locat, J.V.Gardner, H.Lee, L.Mayer, J.E.Hughes Clarke & E.Kammerer</i>	127
Automatic measurement of pore water pressure in the hard-rock slope and the sliding weathered-rock slope – Field survey in mountainous region in Shikoku Island, Japan <i>E.Tamura & S.Matsuka</i>	135
Field measurement of suction in soil and rainfall in Kagoshima Prefecture <i>R.Kitamura, K.Jomoto, K.Yamamoto, T.Terachi, H.Abe & T.Iryo</i>	141
Application of acoustic emission method to Shirasu slope monitoring <i>T.Fujiwara, K.Monma & A.Ishibashi</i>	147
Acoustic emission technique for monitoring soil and rock slope instability <i>A.Kousteni, R.Hill, N.Dixon & J.Kavanagh</i>	151
Hydraulic fracturing as a mechanism of rapid rock mass slides <i>S.Hasegawa & T.Sawada</i>	157
Evolution of ridge-top linear depressions and a disintegration process of mountains <i>K.Mokudai & M.Chigira</i>	163
Geological characteristics of landslides of the soft rock type, Central Japan <i>T.Fujita</i>	169
Study of configuration, scale and distribution of landslides <i>S.Ueno</i>	175
Geodynamics and spatial distribution of properties of sea cliff colluvium <i>E.Dembicki & W.Subotowicz</i>	181
A mineralogical study of the mechanism of landslide in the serpentinite belt <i>K.Yokota, R.Yatabe & N.Yagi</i>	187
Detailed geotechnical study in Modi Khola Hydroelectric Project, Western Nepal <i>V.Dangol & T.R.Paudel</i>	193
Local instability in saturated colluvial slopes in southern Brazil <i>W.A.Lacerda</i>	199
2 Soil slope stability analyses	
A new theory on instability of planar-sliding slope – Stiffness effect instability theory <i>Qin Siqing</i>	207
Ultimate state of a slope at non-linear unsteady creep and damage <i>S.A.Elsoufiev</i>	213
Application of FEM on the basis of elasto-viscoplastic model to landslide problems <i>H.Fujii, S.Nishimura, T.Hori & K.Shimada</i>	219
Coupled excavation analyses of vertical cut and slopes in clay <i>T.Hoshikawa, T.Nakai & Y.Nishi</i>	225

Effects of a deep excavation on a potentially unstable urban hillside in San Marino <i>G.Gottardi, G.Marchi, L.Tonni & F.Bianchi</i>	233
Displacements of a slope in the Euganean Hills induced by quarrying <i>S.Cola & P.Simonini</i>	239
Stability evaluation of sliding failure along thin mudstone deposit due to excavation <i>Y.Nakamura, J.Kojima, S.Hanagata, K.Narita & Y.Ohne</i>	245
Appraisal of Bishop's method of slope stability analysis <i>G.L.Sivakumar Babu & A.C.Bijoy</i>	249
A convenient alternative representation of Taylor's stability chart <i>R.Baker & Y.Tanaka</i>	253
Influence of stress-strain curves on safety factors and inter-slice forces in FEM <i>A.Mochizuki, J.Xiong & M.Mikasa</i>	259
Slope stability analysis considering the deformation of slices <i>Y.Terado, H.Hazarika, T.Yamazaki & H.Hayamizu</i>	265
Slope stability analysis using a spring attached to inter-slice planes <i>K.Kondo & S.Hayashi</i>	271
Three-dimensional stability analysis of locally loaded slopes <i>X.Q.Yang, S.X.He & Z.D.Liu</i>	277
A lower-bound solution of earth pressure of cohesive backfill with inclined slope surface <i>M.Luan, T.Nian, C.F.Lee, K.T.Law, K.Ugai & Q.Yang</i>	281
Shear band formation and propagation in clay slopes <i>L.E.Vallejo</i>	287
Progressive failure analysis of slopes based on a LEM <i>T.Yamagami, M.Taki, J.-C.Jiang & S.Yamabe</i>	293
Progressive failure analysis based on a method of non-vertical slices <i>T.Yamagami, Y.A.Khan & J.-C.Jiang</i>	299
Back analysis of unsaturated shear strength from a circular slope failure <i>J.-C.Jiang, T.Yamagami & Y.Ueta</i>	305
A back analysis of MC-DP model parameters based on FEM and NLSSQP method <i>T.Q.Feng, T.Yamagami & J.-C.Jiang</i>	311
An FE analysis of anisotropic soil slopes and back analysis for its parameters <i>T.Q.Feng, T.Yamagami & J.-C.Jiang</i>	317
3 Rock slope stability analyses	
An upper bound wedge failure analysis method <i>Z.Y.Chen, Y.J.Wang, X.G.Wang & J.Wang</i>	325
Stability analysis of rockfill dam and retaining wall constructed on dip bedrock <i>S.S.Chen & X.S.Fang</i>	329

Soil-water coupling analysis of progressive failure of cut slope using a strain softening model <i>T.Adachi, F.Oka, H.Osaki, H.Fukui & F.Zhang</i>	333
A back analysis in assessing the stability of slopes by means of surface measurements <i>S.Sakurai & T.Nakayama</i>	339
Numerical simulation of excavation of the permanent ship lock in the Three Gorges Project <i>Y.Zhang & K.Yin</i>	345
Numerical simulation of the buckling failure in rock slopes <i>Y.Hu & H.-G.Kempfert</i>	349
Fuzzy-based stability investigation of sliding rock masses <i>N.O.Nawari & R.Liang</i>	355
Stability evaluation of discontinuous rock slope <i>K.Kawamura & M.Nishioka</i>	361
Earthquake and seepage effects on the mobilised shear strength of closely jointed rock <i>M.J.Pender</i>	367
4 Effects of rainfall and groundwater	
Design chart for cut slope in unsaturated residual soils <i>R.Subramaniam & F.H.Ali</i>	375
Factors affecting on water retention characteristic of soils <i>K.Kawai, D.Karube & H.Seguchi</i>	381
Suction profiles and stability of residual soil slopes <i>E.C.Leong, B.K.Low & H.Rahardjo</i>	387
Effects of perched water table on slope stability in unsaturated soils <i>L.T.Huat, F.H.Ali, S.Mariappan & P.K.Soon</i>	393
Field suction variation with rainfall on cut slope in weathered sedimentary residual soil <i>L.T.Huat, F.H.Ali & S.Mariappan</i>	399
Study of slope stability for Pleistocene cemented sandy sediments in Singapore (Old Alluvium) <i>K.K.Poh, P.B.Ng & K.Orihara</i>	405
Influence of pore water pressures in partly submerged slopes on the critical pool level <i>E.N.Bromhead, A.J.Harris & P.D.J.Watson</i>	411
Role of pore water and air pressures on slope stability in reservoir for pumped storage power plant <i>T.Sato, N.Nishizawa, M.Wakamatsu, Y.Hiraiwa & I.Kumazaki</i>	417
Seepage characteristics of decomposed granite soil slope during rainfall <i>S.Sasaki, S.Araki & K.Nishida</i>	423
Relation between slope stability and groundwater flow caused by rainfalls <i>M.Enoki & A.A.Kokubu</i>	429

Salient aspects of numerical analyses of rainfall induced slope instability <i>C.-H.Wang</i>	435
Centrifuge model tests and stability analysis on mobilizing process of shear strength of decomposed granite soil slope <i>S.Yoshitake & K.Onitsuka</i>	441
Centrifuge tests on slope failure during water infiltration <i>H.G.B.Allersma</i>	447
Reinforcement's effects in the tank-model prediction of slope failures due to rainfalls <i>M.Shimizu</i>	453
Investigation of danger rainfall prediction system for natural and cut slopes <i>H.Miki, A.Fujii & M.Furuta</i>	459
Predicting rainfall-induced slope failures from moisture content measurement <i>M.Nishigaki, A.Tohari & M.Komatsu</i>	465
Analytical study on the slope stability during rainfall and the rainfall indexes <i>A.Togari-Ohta, T.Sugiyama, T.Nara & S.Yamazaki</i>	471
Evaluation of critical rainfall with logit model <i>T.Sugii, K.Yamada & T.Uno</i>	477
Strategy for prevention of natural disaster due to slope failure <i>R.Kitamura, T.Iryo, H.Abe, H.Yakabe & K.Yamamoto</i>	483
Relationships between rainfalls and landslides after forest damages by typhoons <i>S.Murata, H.Shibuya & K.Hayashi</i>	489
Threshold rainfall for Beragala landslide in Sri Lanka <i>A.K.Dissanayake, Y.Sasaki & N.H.Seneviratne</i>	495
The importance of the groundwater regime studies of unstable slopes – An example of investigations on the landslide 'Plavinac', Yugoslavia <i>G.Rasula & M.Rasula</i>	501
Landslides induced by rainstorm in the Poun area of Chungchongbukdo Province <i>D.Han & K.Kim</i>	509
Characteristics of Cretaceous granite slopes that failed during heavy rainfall <i>T.Yamamoto, M.Suzuki, N.Matsumoto & Y.Sehara</i>	515
Seepage analyses of embankments on Tokaido-Shinkansen in long term rainfalls <i>K.Kato & S.Sakajo</i>	521
Instability analyses of embankments on Tokaido-Shinkansen in heavy rainfalls <i>S.Sakajo & K.Kato</i>	527
Chemical effect of groundwater from acid rain on slope evolution <i>Z.Xu & R.Huang</i>	533
Slope failures triggered by an earthquake and a heavy rain in Chiba <i>S.Yasuda, Y.Yoshida, T.Kobayashi & T.Mizunaga</i>	539

Numerical evaluation of the effects of drainage pipes <i>T.Yamagami, K.Nishida & J.-C.Jiang</i>	545
Effects of horizontal drains on ground water level and slope stability <i>F.Cai & K.Ugai</i>	551
5 Effects of seismicity	
Collapse of high embankment in the 1994 far-off Sanriku Earthquake <i>Y.Shioi & S.Sutoh</i>	559
Slope instability of large embankments in residential areas caused by the Hyogoken-Nanbu Earthquake, 1995 <i>T.Kamai, Y.Kobayashi & H.Shuzui</i>	565
Analysis of toppling failure of mountain slope caused by the Hyogoken-Nanbu Earthquake <i>T.Okimura, N.Yoshida & N.Torii</i>	571
Stress condition and consequence of liquefaction on weathered granitic sands <i>Y.Okada, K.Sassa & H.Fukuoka</i>	577
Effects of density, stress state and shear history on sliding-surface liquefaction behavior of sands in ring-shear apparatus <i>G.Wang & K.Sassa</i>	583
Real seismic-wave loading ring-shear test on the Nikawa landslide <i>F.W.Wang, K.Sassa & H.Fukuoka</i>	589
Dynamic properties of fine-grained soils in pre-sheared sliding surfaces <i>M.Yoshimine, R.Kuwano, J.Kuwano & K.Ishihara</i>	595
Dependence of pore pressure generation on frequency of loading at sliding surface <i>D.A.Vankov & K.Sassa</i>	601
On-line earthquake response tests on embankments founded on saturated sandy deposits <i>T.Fujii, M.Hyodo, Y.Nakata, K.Yabuki & S.Kusakabe</i>	607
Dynamic centrifuge tests of embankments on sloped ground and their stability analyses <i>J.Koseki, O.Matsuo, K.Kondo & S.Nishihara</i>	613
Evaluation of liquefaction potential for loose minefill slopes <i>P.Kudella</i>	619
Runout distances of earthquake-induced landslides <i>Y.Kobayashi</i>	625
Evaluation of measured vertical and horizontal residual deformation at crest of rockfill dam under earthquake <i>T.Okamoto</i>	631
Displacements of slopes subjected to seismic loads <i>R.L.Michalowski & L.You</i>	637
Permanent displacement analysis of circular sliding block during shaking <i>H.R.Razaghi, E.Yanagisawa & M.Kazama</i>	641

Dynamic analyses of slopes based on a simple strain-softening model of soil <i>A.Wakai & K.Ugai</i>	647
Slope instability due to rainfall and earthquake <i>K.Shimada, H.Fujii, S.Nishimura, T.Nishiyama & T.Morii</i>	653
Shaking table tests of concrete block retaining walls <i>S.Mori, T.Matsuyama & T.Ushiro</i>	657
Shakedown analysis of soil foundations under varied loads <i>M.Luan, Y.Cao & K.Ugai</i>	663
Author index	669