

Contents

Preface xv

Part 1 Basics 2

1 Introduction to Mechanical Engineering Design 3

- 1-1** Design 4
- 1-2** Mechanical Engineering Design 5
- 1-3** Phases and Interactions of the Design Process 5
- 1-4** Design Tools and Resources 8
- 1-5** The Design Engineer's Professional Responsibilities 10
- 1-6** Standards and Codes 12
- 1-7** Economics 13
- 1-8** Safety and Product Liability 15
- 1-9** Stress and Strength 16
- 1-10** Uncertainty 16
- 1-11** Design Factor and Factor of Safety 18
- 1-12** Reliability and Probability of Failure 20
- 1-13** Relating the Design Factor to Reliability 24
- 1-14** Dimensions and Tolerances 27
- 1-15** Units 31
- 1-16** Calculations and Significant Figures 32
- 1-17** Design Topic Interdependencies 33
- 1-18** Power Transmission Case Study Specifications 34
- Problems** 36

2 Materials 41

- 2-1** Material Strength and Stiffness 42
- 2-2** The Statistical Significance of Material Properties 46
- 2-3** Strength and Cold Work 49
- 2-4** Hardness 52

- 2-5** Impact Properties 53
- 2-6** Temperature Effects 54
- 2-7** Numbering Systems 56
- 2-8** Sand Casting 57
- 2-9** Shell Molding 57
- 2-10** Investment Casting 58
- 2-11** Powder-Metallurgy Process 58
- 2-12** Hot-Working Processes 58
- 2-13** Cold-Working Processes 59
- 2-14** The Heat Treatment of Steel 60
- 2-15** Alloy Steels 63
- 2-16** Corrosion-Resistant Steels 64
- 2-17** Casting Materials 65
- 2-18** Nonferrous Metals 67
- 2-19** Plastics 70
- 2-20** Composite Materials 71
- 2-21** Materials Selection 72
- Problems** 79

3 Load and Stress Analysis 85

- 3-1** Equilibrium and Free-Body Diagrams 86
- 3-2** Shear Force and Bending Moments in Beams 89
- 3-3** Singularity Functions 91
- 3-4** Stress 93
- 3-5** Cartesian Stress Components 93
- 3-6** Mohr's Circle for Plane Stress 94
- 3-7** General Three-Dimensional Stress 100
- 3-8** Elastic Strain 101
- 3-9** Uniformly Distributed Stresses 102
- 3-10** Normal Stresses for Beams in Bending 103
- 3-11** Shear Stresses for Beams in Bending 108
- 3-12** Torsion 115
- 3-13** Stress Concentration 124

3-14	Stresses in Pressurized Cylinders	127
3-15	Stresses in Rotating Rings	129
3-16	Press and Shrink Fits	130
3-17	Temperature Effects	131
3-18	Curved Beams in Bending	132
3-19	Contact Stresses	136
3-20	Summary	140
	Problems	141
4	Deflection and Stiffness	161
4-1	Spring Rates	162
4-2	Tension, Compression, and Torsion	163
4-3	Deflection Due to Bending	164
4-4	Beam Deflection Methods	166
4-5	Beam Deflections by Superposition	167
4-6	Beam Deflections by Singularity Functions	170
4-7	Strain Energy	176
4-8	Castigliano's Theorem	178
4-9	Deflection of Curved Members	183
4-10	Statically Indeterminate Problems	189
4-11	Compression Members—General	195
4-12	Long Columns with Central Loading	195
4-13	Intermediate-Length Columns with Central Loading	198
4-14	Columns with Eccentric Loading	198
4-15	Struts or Short Compression Members	200
4-16	Elastic Stability	204
4-17	Shock and Impact	205
	Problems	206
Part 2	Failure Prevention	226
5	Failures Resulting from Static Loading	227
5-1	Static Strength	230
5-2	Stress Concentration	231
5-3	Failure Theories	233
5-4	Maximum-Shear-Stress Theory for Ductile Materials	233
5-5	Distortion-Energy Theory for Ductile Materials	235
5-6	Coulomb-Mohr Theory for Ductile Materials	242
5-7	Failure of Ductile Materials Summary	245
5-8	Maximum-Normal-Stress Theory for Brittle Materials	249
5-9	Modifications of the Mohr Theory for Brittle Materials	249
5-10	Failure of Brittle Materials Summary	252
5-11	Selection of Failure Criteria	252
5-12	Introduction to Fracture Mechanics	253
5-13	Important Design Equations	262
	Problems	264
6	Fatigue Failure Resulting from Variable Loading	273
6-1	Introduction to Fatigue in Metals	274
6-2	Approach to Fatigue Failure in Analysis and Design	280
6-3	Fatigue-Life Methods	281
6-4	The Stress-Life Method	281
6-5	The Strain-Life Method	284
6-6	The Linear-Elastic Fracture Mechanics Method	286
6-7	The Endurance Limit	290
6-8	Fatigue Strength	291
6-9	Endurance Limit Modifying Factors	294
6-10	Stress Concentration and Notch Sensitivity	303
6-11	Characterizing Fluctuating Stresses	308
6-12	Fatigue Failure Criteria for Fluctuating Stress	311
6-13	Torsional Fatigue Strength under Fluctuating Stresses	325
6-14	Combinations of Loading Modes	325
6-15	Varying, Fluctuating Stresses; Cumulative Fatigue Damage	329
6-16	Surface Fatigue Strength	335
6-17	Road Maps and Important Design Equations for the Stress-Life Method	338
	Problems	341

Part 3 Design of Mechanical Elements 350**7 Shafts and Shaft Components** 351

7-1 Introduction 352
7-2 Shaft Materials 352
7-3 Shaft Layout 353
7-4 Shaft Design for Stress 358
7-5 Deflection Considerations 371
7-6 Critical Speeds for Shafts 375
7-7 Miscellaneous Shaft Components 380
7-8 Limits and Fits 387
Problems 392

8 Screws, Fasteners, and the Design of Nonpermanent Joints 401

8-1 Thread Standards and Definitions 402
8-2 The Mechanics of Power Screws 406
8-3 Threaded Fasteners 414
8-4 Joints—Fastener Stiffness 416
8-5 Joints—Member Stiffness 419
8-6 Bolt Strength 424
8-7 Tension Joints—The External Load 427
8-8 Relating Bolt Torque to Bolt Tension 429
8-9 Statically Loaded Tension Joint with Preload 432
8-10 Gasketed Joints 436
8-11 Fatigue Loading of Tension Joints 436
8-12 Bolted and Riveted Joints Loaded in Shear 443
Problems 451

9 Welding, Bonding, and the Design of Permanent Joints 467

9-1 Welding Symbols 468
9-2 Butt and Fillet Welds 470
9-3 Stresses in Welded Joints in Torsion 474
9-4 Stresses in Welded Joints in Bending 479

9-5 The Strength of Welded Joints 481
9-6 Static Loading 484
9-7 Fatigue Loading 488
9-8 Resistance Welding 490
9-9 Adhesive Bonding 490
Problems 499

10 Mechanical Springs 509

10-1 Stresses in Helical Springs 510
10-2 The Curvature Effect 511
10-3 Deflection of Helical Springs 512
10-4 Compression Springs 512
10-5 Stability 514
10-6 Spring Materials 515
10-7 Helical Compression Spring Design for Static Service 520
10-8 Critical Frequency of Helical Springs 526
10-9 Fatigue Loading of Helical Compression Springs 528
10-10 Helical Compression Spring Design for Fatigue Loading 531
10-11 Extension Springs 534
10-12 Helical Coil Torsion Springs 542
10-13 Belleville Springs 549
10-14 Miscellaneous Springs 550
10-15 Summary 552
Problems 552

11 Rolling-Contact Bearings 561

11-1 Bearing Types 562
11-2 Bearing Life 565
11-3 Bearing Load Life at Rated Reliability 566
11-4 Reliability versus Life—The Weibull Distribution 568
11-5 Relating Load, Life, and Reliability 569
11-6 Combined Radial and Thrust Loading 571
11-7 Variable Loading 577
11-8 Selection of Ball and Cylindrical Roller Bearings 580
11-9 Selection of Tapered Roller Bearings 583
11-10 Design Assessment for Selected Rolling-Contact Bearings 592

11-11	Lubrication 596	13-17	Force Analysis—Worm Gearing 706
11-12	Mounting and Enclosure 597	Problems	712
	Problems 601		
12	Lubrication and Journal Bearings 609	14	Spur and Helical Gears 725
12-1	Types of Lubrication 610	14-1	The Lewis Bending Equation 726
12-2	Viscosity 611	14-2	Surface Durability 735
12-3	Petroff's Equation 613	14-3	AGMA Stress Equations 737
12-4	Stable Lubrication 615	14-4	AGMA Strength Equations 739
12-5	Thick-Film Lubrication 616	14-5	Geometry Factors I and J (Z_I and Y_J) 743
12-6	Hydrodynamic Theory 617	14-6	The Elastic Coefficient C_p (Z_E) 748
12-7	Design Considerations 621	14-7	Dynamic Factor K_v 748
12-8	The Relations of the Variables 623	14-8	Overload Factor K_o 750
12-9	Steady-State Conditions in Self-Contained Bearings 637	14-9	Surface Condition Factor C_f (Z_R) 750
12-10	Clearance 640	14-10	Size Factor K_s 751
12-11	Pressure-Fed Bearings 642	14-11	Load-Distribution Factor K_m (K_H) 751
12-12	Loads and Materials 648	14-12	Hardness-Ratio Factor C_H (Z_W) 753
12-13	Bearing Types 650	14-13	Stress-Cycle Factors Y_N and Z_N 754
12-14	Thrust Bearings 651	14-14	Reliability Factor K_R (Y_Z) 755
12-15	Boundary-Lubricated Bearings 652	14-15	Temperature Factor K_T (Y_θ) 756
	Problems 660	14-16	Rim-Thickness Factor K_B 756
13	Gears—General 665	14-17	Safety Factors S_F and S_H 757
13-1	Types of Gears 666	14-18	Analysis 757
13-2	Nomenclature 667	14-19	Design of a Gear Mesh 767
13-3	Conjugate Action 669		Problems 772
13-4	Involute Properties 670	15	Bevel and Worm Gears 777
13-5	Fundamentals 670	15-1	Bevel Gearing—General 778
13-6	Contact Ratio 676	15-2	Bevel-Gear Stresses and Strengths 780
13-7	Interference 677	15-3	AGMA Equation Factors 783
13-8	The Forming of Gear Teeth 679	15-4	Straight-Bevel Gear Analysis 795
13-9	Straight Bevel Gears 682	15-5	Design of a Straight-Bevel Gear Mesh 798
13-10	Parallel Helical Gears 683	15-6	Worm Gearing—AGMA Equation 801
13-11	Worm Gears 687	15-7	Worm-Gear Analysis 805
13-12	Tooth Systems 688	15-8	Designing a Worm-Gear Mesh 809
13-13	Gear Trains 690	15-9	Buckingham Wear Load 812
13-14	Force Analysis—Spur Gearing 697		Problems 813
13-15	Force Analysis—Bevel Gearing 701	16	Clutches, Brakes, Couplings, and Flywheels 817
13-16	Force Analysis—Helical Gearing 704	16-1	Static Analysis of Clutches and Brakes 819
		16-2	Internal Expanding Rim Clutches and Brakes 824

16-3	External Contracting Rim Clutches and Brakes	832
16-4	Band-Type Clutches and Brakes	836
16-5	Frictional-Contact Axial Clutches	837
16-6	Disk Brakes	841
16-7	Cone Clutches and Brakes	845
16-8	Energy Considerations	848
16-9	Temperature Rise	849
16-10	Friction Materials	853
16-11	Miscellaneous Clutches and Couplings	856
16-12	Flywheels	858
	Problems	863

17 Flexible Mechanical Elements 871

17-1	Belts	872
17-2	Flat- and Round-Belt Drives	875
17-3	V Belts	890
17-4	Timing Belts	898
17-5	Roller Chain	899
17-6	Wire Rope	908
17-7	Flexible Shafts	916
	Problems	917

18 Power Transmission Case Study 925

18-1	Design Sequence for Power Transmission	927
18-2	Power and Torque Requirements	928
18-3	Gear Specification	928
18-4	Shaft Layout	935
18-5	Force Analysis	937
18-6	Shaft Material Selection	937
18-7	Shaft Design for Stress	938
18-8	Shaft Design for Deflection	938
18-9	Bearing Selection	939
18-10	Key and Retaining Ring Selection	940
18-11	Final Analysis	943
	Problems	943

Part 4 Special Topics 944

19	Finite-Element Analysis	945
19-1	The Finite-Element Method	947
19-2	Element Geometries	949
19-3	The Finite-Element Solution Process	951
19-4	Mesh Generation	954
19-5	Load Application	956
19-6	Boundary Conditions	957
19-7	Modeling Techniques	958
19-8	Thermal Stresses	961
19-9	Critical Buckling Load	961
19-10	Vibration Analysis	963
19-11	Summary	964
	Problems	966

20 Geometric Dimensioning and Tolerancing 969

20-1	Dimensioning and Tolerancing Systems	970
20-2	Definition of Geometric Dimensioning and Tolerancing	971
20-3	Datums	976
20-4	Controlling Geometric Tolerances	981
20-5	Geometric Characteristic Definitions	985
20-6	Material Condition Modifiers	994
20-7	Practical Implementation	996
20-8	GD&T in CAD Models	1001
20-9	Glossary of GD&T Terms	1002
	Problems	1005

Appendices

A	Useful Tables	1011
B	Answers to Selected Problems	1067