

Contents

Preface xi

Chapter 1

Introduction 3

- 1.1** Preliminary Remarks 3
- 1.2** The Concept of a Fluid 4
- 1.3** The Fluid as a Continuum 6
- 1.4** Dimensions and Units 7
- 1.5** Properties of the Velocity Field 14
- 1.6** Thermodynamic Properties of a Fluid 16
- 1.7** Viscosity and Other Secondary Properties 23
- 1.8** Basic Flow Analysis Techniques 38
- 1.9** Flow Patterns: Streamlines, Streaklines, and Pathlines 39
- 1.10** The Engineering Equation Solver 44
- 1.11** Uncertainty of Experimental Data 45
- 1.12** The Fundamentals of Engineering (FE) Examination 46
- 1.13** Problem-Solving Techniques 47
- 1.14** History and Scope of Fluid Mechanics 47
 - Problems 49
 - Fundamentals of Engineering Exam Problems 57
 - Comprehensive Problems 57
 - References 59

Chapter 2

Pressure Distribution in a Fluid 63

- 2.1** Pressure and Pressure Gradient 63
- 2.2** Equilibrium of a Fluid Element 65
- 2.3** Hydrostatic Pressure Distributions 67
- 2.4** Application to Manometry 74

- 2.5** Hydrostatic Forces on Plane Surfaces 78
- 2.6** Hydrostatic Forces on Curved Surfaces 84
- 2.7** Hydrostatic Forces in Layered Fluids 86
- 2.8** Buoyancy and Stability 89
- 2.9** Pressure Distribution in Rigid-Body Motion 94
- 2.10** Pressure Measurement 102
 - Summary 106
 - Problems 106
 - Word Problems 128
 - Fundamentals of Engineering Exam Problems 129
 - Comprehensive Problems 130
 - Design Projects 131
 - References 132

Chapter 3

Integral Relations for a Control Volume 135

- 3.1** Basic Physical Laws of Fluid Mechanics 135
- 3.2** The Reynolds Transport Theorem 139
- 3.3** Conservation of Mass 147
- 3.4** The Linear Momentum Equation 153
- 3.5** The Angular Momentum Theorem 166
- 3.6** The Energy Equation 172
- 3.7** Frictionless Flow: The Bernoulli Equation 182
 - Summary 191
 - Problems 192
 - Word Problems 220
 - Fundamentals of Engineering Exam Problems 221
 - Comprehensive Problems 222
 - Design Project 223
 - References 223

Chapter 4**Differential Relations for Fluid Flow 225**

4.1 The Acceleration Field of a Fluid 225
4.2 The Differential Equation of Mass Conservation 227
4.3 The Differential Equation of Linear Momentum 234
4.4 The Differential Equation of Angular Momentum 240
4.5 The Differential Equation of Energy 242
4.6 Boundary Conditions for the Basic Equations 244
4.7 The Stream Function 249
4.8 Vorticity and Irrotationality 257
4.9 Frictionless Irrotational Flows 259
4.10 Some Illustrative Plane Potential Flows 264
4.11 Some Illustrative Incompressible Viscous Flows 269
 Summary 278
 Problems 278
 Word Problems 288
 Fundamentals of Engineering Exam Problems 289
 Comprehensive Problems 289
 References 290

Chapter 5**Dimensional Analysis and Similarity 293**

5.1 Introduction 293
5.2 The Principle of Dimensional Homogeneity 296
5.3 The Pi Theorem 302
5.4 Nondimensionalization of the Basic Equations 309
5.5 Modeling and Its Pitfalls 318
 Summary 328
 Problems 329
 Word Problems 337
 Fundamentals of Engineering Exam Problems 337
 Comprehensive Problems 338
 Design Projects 339
 References 340

Chapter 6**Viscous Flow in Ducts 343**

6.1 Reynolds Number Regimes 343
6.2 Internal versus External Viscous Flows 348
6.3 Head Loss—The Friction Factor 351
6.4 Laminar Fully Developed Pipe Flow 353

6.5 Turbulence Modeling 355**6.6** Turbulent Pipe Flow 361**6.7** Three Types of Pipe Flow Problems 369**6.8** Flow in Noncircular Ducts 375**6.9** Minor Losses in Pipe Systems 384**6.10** Multiple-Pipe Systems 393**6.11** Experimental Duct Flows: Diffuser Performance 399**6.12** Fluid Meters 404

Summary 425

Problems 426

Word Problems 443

Fundamentals of Engineering Exam Problems 444

Comprehensive Problems 445

Design Projects 447

References 447

Chapter 7**Flow Past Immersed Bodies 451****7.1** Reynolds Number and Geometry Effects 451**7.2** Momentum Integral Estimates 455**7.3** The Boundary Layer Equations 458**7.4** The Flat-Plate Boundary Layer 461**7.5** Boundary Layers with Pressure Gradient 470**7.6** Experimental External Flows 476

Summary 503

Problems 503

Word Problems 516

Fundamentals of Engineering Exam Problems 517

Comprehensive Problems 517

Design Project 518

References 519

Chapter 8**Potential Flow and Computational Fluid Dynamics 523****8.1** Introduction and Review 523**8.2** Elementary Plane Flow Solutions 526**8.3** Superposition of Plane Flow Solutions 528**8.4** Plane Flow past Closed-Body Shapes 535**8.5** Other Plane Potential Flows 544**8.6** Images 549**8.7** Airfoil Theory 551**8.8** Axisymmetric Potential Flow 563

8.9	Numerical Analysis	568	10.7	Flow Measurement and Control by Weirs	724
	Summary	583		Summary	731
	Problems	583		Problems	731
	Word Problems	594		Word Problems	742
	Comprehensive Problems	594		Fundamentals of Engineering Exam Problems	743
	Design Projects	596		Comprehensive Problems	743
	References	596		Design Projects	744
				References	745
Chapter 9					
Compressible Flow 599					
9.1	Introduction	599	Chapter 11		
9.2	The Speed of Sound	604	Turbomachinery	747	
9.3	Adiabatic and Isentropic Steady Flow	606	11.1	Introduction and Classification	747
9.4	Isentropic Flow with Area Changes	612	11.2	The Centrifugal Pump	750
9.5	The Normal Shock Wave	619	11.3	Pump Performance Curves and Similarity Rules	756
9.6	Operation of Converging and Diverging Nozzles	627	11.4	Mixed- and Axial-Flow Pumps: The Specific Speed	766
9.7	Compressible Duct Flow with Friction	632	11.5	Matching Pumps to System Characteristics	772
9.8	Frictionless Duct Flow with Heat Transfer	644	11.6	Turbines	779
9.9	Two-Dimensional Supersonic Flow	649		Summary	792
9.10	Prandtl-Meyer Expansion Waves	659		Problems	793
	Summary	671		Word Problems	804
	Problems	672		Comprehensive Problems	804
	Word Problems	685		Design Project	806
	Fundamentals of Engineering Exam Problems	685		References	806
	Comprehensive Problems	686			
	Design Projects	687			
	References	688			
Chapter 10					
Open-Channel Flow 691					
10.1	Introduction	691	Appendix A	Physical Properties of Fluids	808
10.2	Uniform Flow; The Chézy Formula	697	Appendix B	Compressible Flow Tables	813
10.3	Efficient Uniform-Flow Channels	702	Appendix C	Conversion Factors	830
10.4	Specific Energy; Critical Depth	704	Appendix D	Equations of Motion in Cylindrical Coordinates	832
10.5	The Hydraulic Jump	711	Appendix E	Introduction to EES	834
10.6	Gradually Varied Flow	716	Answers to Selected Problems	846	
			Index	853	