

Contents

Preface xv

Part 1 Basics 2

1 Introduction to Mechanical Engineering Design 3

- 1-1** Design 4
- 1-2** Mechanical Engineering Design 5
- 1-3** Phases and Interactions of the Design Process 5
- 1-4** Design Tools and Resources 8
- 1-5** The Design Engineer's Professional Responsibilities 10
- 1-6** Standards and Codes 12
- 1-7** Economics 12
- 1-8** Safety and Product Liability 15
- 1-9** Stress and Strength 15
- 1-10** Uncertainty 16
- 1-11** Design Factor and Factor of Safety 17
- 1-12** Reliability 18
- 1-13** Dimensions and Tolerances 19
- 1-14** Units 21
- 1-15** Calculations and Significant Figures 22
- 1-16** Design Topic Interdependencies 23
- 1-17** Power Transmission Case Study Specifications 24
- Problems** 26

2 Materials 31

- 2-1** Material Strength and Stiffness 32
- 2-2** The Statistical Significance of Material Properties 36
- 2-3** Strength and Cold Work 38
- 2-4** Hardness 41
- 2-5** Impact Properties 42
- 2-6** Temperature Effects 43

- 2-7** Numbering Systems 45
- 2-8** Sand Casting 46
- 2-9** Shell Molding 47
- 2-10** Investment Casting 47
- 2-11** Powder-Metallurgy Process 47
- 2-12** Hot-Working Processes 47
- 2-13** Cold-Working Processes 48
- 2-14** The Heat Treatment of Steel 49
- 2-15** Alloy Steels 52
- 2-16** Corrosion-Resistant Steels 53
- 2-17** Casting Materials 54
- 2-18** Nonferrous Metals 55
- 2-19** Plastics 58
- 2-20** Composite Materials 60
- 2-21** Materials Selection 61
- Problems** 67

3 Load and Stress Analysis 71

- 3-1** Equilibrium and Free-Body Diagrams 72
- 3-2** Shear Force and Bending Moments in Beams 77
- 3-3** Singularity Functions 79
- 3-4** Stress 79
- 3-5** Cartesian Stress Components 79
- 3-6** Mohr's Circle for Plane Stress 80
- 3-7** General Three-Dimensional Stress 86
- 3-8** Elastic Strain 87
- 3-9** Uniformly Distributed Stresses 88
- 3-10** Normal Stresses for Beams in Bending 89
- 3-11** Shear Stresses for Beams in Bending 94
- 3-12** Torsion 101
- 3-13** Stress Concentration 110
- 3-14** Stresses in Pressurized Cylinders 113
- 3-15** Stresses in Rotating Rings 115

3-16	Press and Shrink Fits	116
3-17	Temperature Effects	117
3-18	Curved Beams in Bending	118
3-19	Contact Stresses	122
3-20	Summary	126
	Problems	127

4 Deflection and Stiffness 147

4-1	Spring Rates	148
4-2	Tension, Compression, and Torsion	149
4-3	Deflection Due to Bending	150
4-4	Beam Deflection Methods	152
4-5	Beam Deflections by Superposition	153
4-6	Beam Deflections by Singularity Functions	156
4-7	Strain Energy	162
4-8	Castigliano's Theorem	164
4-9	Deflection of Curved Members	169
4-10	Statically Indeterminate Problems	175
4-11	Compression Members—General	181
4-12	Long Columns with Central Loading	181
4-13	Intermediate-Length Columns with Central Loading	184
4-14	Columns with Eccentric Loading	184
4-15	Struts or Short Compression Members	188
4-16	Elastic Stability	190
4-17	Shock and Impact	191
	Problems	192

Part 2 Failure Prevention 212

5 Failures Resulting from Static Loading 213

5-1	Static Strength	216
5-2	Stress Concentration	217
5-3	Failure Theories	219
5-4	Maximum-Shear-Stress Theory for Ductile Materials	219
5-5	Distortion-Energy Theory for Ductile Materials	221

5-6	Coulomb-Mohr Theory for Ductile Materials	228
5-7	Failure of Ductile Materials Summary	231
5-8	Maximum-Normal-Stress Theory for Brittle Materials	235
5-9	Modifications of the Mohr Theory for Brittle Materials	235
5-10	Failure of Brittle Materials Summary	238
5-11	Selection of Failure Criteria	238
5-12	Introduction to Fracture Mechanics	239
5-13	Stochastic Analysis	248
5-14	Important Design Equations	254
	Problems	256

6 Fatigue Failure Resulting from Variable Loading 265

6-1	Introduction to Fatigue in Metals	266
6-2	Approach to Fatigue Failure in Analysis and Design	272
6-3	Fatigue-Life Methods	273
6-4	The Stress-Life Method	273
6-5	The Strain-Life Method	276
6-6	The Linear-Elastic Fracture Mechanics Method	278
6-7	The Endurance Limit	282
6-8	Fatigue Strength	283
6-9	Endurance Limit Modifying Factors	286
6-10	Stress Concentration and Notch Sensitivity	295
6-11	Characterizing Fluctuating Stresses	300
6-12	Fatigue Failure Criteria for Fluctuating Stress	303
6-13	Torsional Fatigue Strength under Fluctuating Stresses	317
6-14	Combinations of Loading Modes	317
6-15	Varying, Fluctuating Stresses; Cumulative Fatigue Damage	321
6-16	Surface Fatigue Strength	327
6-17	Stochastic Analysis	330
6-18	Road Maps and Important Design Equations for the Stress-Life Method	344
	Problems	348

Part 3 Design of Mechanical Elements 358

7 Shafts and Shaft Components 359

- 7-1** Introduction 360
- 7-2** Shaft Materials 360
- 7-3** Shaft Layout 361
- 7-4** Shaft Design for Stress 366
- 7-5** Deflection Considerations 379
- 7-6** Critical Speeds for Shafts 383
- 7-7** Miscellaneous Shaft Components 388
- 7-8** Limits and Fits 395
- Problems** 400

8 Screws, Fasteners, and the Design of Nonpermanent Joints 409

- 8-1** Thread Standards and Definitions 410
- 8-2** The Mechanics of Power Screws 414
- 8-3** Threaded Fasteners 422
- 8-4** Joints—Fastener Stiffness 424
- 8-5** Joints—Member Stiffness 427
- 8-6** Bolt Strength 432
- 8-7** Tension Joints—The External Load 435
- 8-8** Relating Bolt Torque to Bolt Tension 437
- 8-9** Statically Loaded Tension Joint with Preload 440
- 8-10** Gasketed Joints 444
- 8-11** Fatigue Loading of Tension Joints 444
- 8-12** Bolted and Riveted Joints Loaded in Shear 451
- Problems** 459

9 Welding, Bonding, and the Design of Permanent Joints 475

- 9-1** Welding Symbols 476
- 9-2** Butt and Fillet Welds 478
- 9-3** Stresses in Welded Joints in Torsion 482
- 9-4** Stresses in Welded Joints in Bending 487

- 9-5** The Strength of Welded Joints 489
- 9-6** Static Loading 492
- 9-7** Fatigue Loading 496
- 9-8** Resistance Welding 498
- 9-9** Adhesive Bonding 498
- Problems** 507

10 Mechanical Springs 517

- 10-1** Stresses in Helical Springs 518
- 10-2** The Curvature Effect 519
- 10-3** Deflection of Helical Springs 520
- 10-4** Compression Springs 520
- 10-5** Stability 522
- 10-6** Spring Materials 523
- 10-7** Helical Compression Spring Design for Static Service 528
- 10-8** Critical Frequency of Helical Springs 534
- 10-9** Fatigue Loading of Helical Compression Springs 536
- 10-10** Helical Compression Spring Design for Fatigue Loading 539
- 10-11** Extension Springs 542
- 10-12** Helical Coil Torsion Springs 550
- 10-13** Belleville Springs 557
- 10-14** Miscellaneous Springs 558
- 10-15** Summary 560
- Problems** 560

11 Rolling-Contact Bearings 569

- 11-1** Bearing Types 570
- 11-2** Bearing Life 573
- 11-3** Bearing Load Life at Rated Reliability 574
- 11-4** Bearing Survival: Reliability versus Life 576
- 11-5** Relating Load, Life, and Reliability 577
- 11-6** Combined Radial and Thrust Loading 579
- 11-7** Variable Loading 584
- 11-8** Selection of Ball and Cylindrical Roller Bearings 588
- 11-9** Selection of Tapered Roller Bearings 590
- 11-10** Design Assessment for Selected Rolling-Contact Bearings 599

11-11	Lubrication	603
11-12	Mounting and Enclosure	604
Problems		608

12 Lubrication and Journal Bearings 617

12-1	Types of Lubrication	618
12-2	Viscosity	619
12-3	Petroff's Equation	621
12-4	Stable Lubrication	623
12-5	Thick-Film Lubrication	624
12-6	Hydrodynamic Theory	625
12-7	Design Considerations	629
12-8	The Relations of the Variables	631
12-9	Steady-State Conditions in Self-Contained Bearings	645
12-10	Clearance	648
12-11	Pressure-Fed Bearings	650
12-12	Loads and Materials	656
12-13	Bearing Types	658
12-14	Thrust Bearings	659
12-15	Boundary-Lubricated Bearings	660
Problems		669

13 Gears—General 673

13-1	Types of Gear	674
13-2	Nomenclature	675
13-3	Conjugate Action	677
13-4	Involute Properties	678
13-5	Fundamentals	678
13-6	Contact Ratio	684
13-7	Interference	685
13-8	The Forming of Gear Teeth	687
13-9	Straight Bevel Gears	690
13-10	Parallel Helical Gears	691
13-11	Worm Gears	695
13-12	Tooth Systems	696
13-13	Gear Trains	698
13-14	Force Analysis—Spur Gearing	705
13-15	Force Analysis—Bevel Gearing	709
13-16	Force Analysis—Helical Gearing	712

13-17	Force Analysis—Worm Gearing	714
Problems		720

14 Spur and Helical Gears 733

14-1	The Lewis Bending Equation	734
14-2	Surface Durability	743
14-3	AGMA Stress Equations	745
14-4	AGMA Strength Equations	747
14-5	Geometry Factors I and J (Z_I and Y_J)	751
14-6	The Elastic Coefficient C_p (Z_E)	756
14-7	Dynamic Factor K_v	756
14-8	Overload Factor K_o	758
14-9	Surface Condition Factor C_f (Z_R)	758
14-10	Size Factor K_s	759
14-11	Load-Distribution Factor K_m (K_H)	759
14-12	Hardness-Ratio Factor C_H	761
14-13	Stress Cycle Life Factors Y_N and Z_N	762
14-14	Reliability Factor K_R (Y_Z)	763
14-15	Temperature Factor K_T (Y_b)	764
14-16	Rim-Thickness Factor K_B	764
14-17	Safety Factors S_F and S_H	765
14-18	Analysis	765
14-19	Design of a Gear Mesh	775
Problems		780

15 Bevel and Worm Gears 785

15-1	Bevel Gearing—General	786
15-2	Bevel-Gear Stresses and Strengths	788
15-3	AGMA Equation Factors	791
15-4	Straight-Bevel Gear Analysis	803
15-5	Design of a Straight-Bevel Gear Mesh	806
15-6	Worm Gearing—AGMA Equation	809
15-7	Worm-Gear Analysis	813
15-8	Designing a Worm-Gear Mesh	817
15-9	Buckingham Wear Load	820
Problems		821

16 Clutches, Brakes, Couplings, and Flywheels 825

16-1	Static Analysis of Clutches and Brakes	827
16-2	Internal Expanding Rim Clutches and Brakes	832

16-3	External Contracting Rim Clutches and Brakes	840
16-4	Band-Type Clutches and Brakes	844
16-5	Frictional-Contact Axial Clutches	845
16-6	Disk Brakes	849
16-7	Cone Clutches and Brakes	853
16-8	Energy Considerations	856
16-9	Temperature Rise	857
16-10	Friction Materials	861
16-11	Miscellaneous Clutches and Couplings	864
16-12	Flywheels	866
	Problems	871
17	Flexible Mechanical Elements	879
17-1	Belts	880
17-2	Flat- and Round-Belt Drives	883
17-3	V Belts	898
17-4	Timing Belts	906
17-5	Roller Chain	907
17-6	Wire Rope	916
17-7	Flexible Shafts	924
	Problems	925
18	Power Transmission Case Study	933
18-1	Design Sequence for Power Transmission	935
18-2	Power and Torque Requirements	936
18-3	Gear Specification	936
18-4	Shaft Layout	943
18-5	Force Analysis	945
18-6	Shaft Material Selection	945
18-7	Shaft Design for Stress	946
18-8	Shaft Design for Deflection	946
18-9	Bearing Selection	947
18-11	Key and Retaining Ring Selection	948
18-12	Final Analysis	951
	Problems	951

Part 4	Analysis Tools	952
19	Finite-Element Analysis	953

19-1	The Finite-Element Method	955
19-2	Element Geometries	957
19-3	The Finite-Element Solution Process	959
19-4	Mesh Generation	962
19-5	Load Application	964
19-6	Boundary Conditions	965
19-7	Modeling Techniques	966
19-8	Thermal Stresses	969
19-9	Critical Buckling Load	969
19-10	Vibration Analysis	971
19-11	Summary	972
	Problems	974

20	Statistical Considerations	977
20-1	Random Variables	978
20-2	Arithmetic Mean, Variance, and Standard Deviation	980
20-3	Probability Distributions	985
20-4	Propagation of Error	992
20-5	Linear Regression	994
	Problems	997

Appendices

A	Useful Tables	1003
B	Answers to Selected Problems	1059

Index 1065