

Contents

1	Method of statistical imitation, its creator S. Ulam. Modelling of the photons scattered in a tissue	10
2	Modelling of the photons scattered in a tissue	14
3	Modelling of the statistical dependences of the photons scattered in a tissue	28
4	The regularities of multibeam acoustic waves interference. The analysis by the envelope method	32
5	Suppression of interface impedance contrast in plane parallel optical system	38
6	About one condition of light antireflection by multi-layered structures	47
7	Application of envelope function method for Fabry-Perot interference extrema to the ellipsometry of monolayered coatings	51
8	Interference of electromagnetic waves in plane-parallel systems	56
9	Modeling by the method of phase compensation of light interference in the field of longitudinal-transverse splitting of polariton resonance	73
10	Instrumental characteristics of interferograms	84
11	Simulation of electromagnetic wave transmission by multilayer structure with fluctuation of refractive indices	91
12	Modelling of the optical spectrum of hydrogen-like atoms in the Bohr model by the method of gold ratio	94
13	Monte Carlo algoritm for modelling gold ratio number	99
14	The use of the golden ratio method to study the laws of light scattering by the medium	104
15	Regularities of the "golden" proportion and Fibonacci numbers in the oscillation spectra of oscillators	108

16 Statistical optimization of the optical cantilever	121
17 Simulating oscillations of cantilever	124
18 Statistics simulating opticals data	127
19 Simulation of statistical mean and variance of nonlinear transformed opticals random data	150