

Contents

Preface *xvii*

List of Symbols *xxi*

Abbreviations *xxxi*

Part I Fundamentals of Viscoelastic Damping 1

1 Vibration Damping 3

- 1.1 Overview 3
- 1.2 Passive, Active, and Hybrid Vibration Control 3
 - 1.2.1 Passive Damping 3
 - 1.2.1.1 Free and Constrained Damping Layers 3
 - 1.2.1.2 Shunted Piezoelectric Treatments 4
 - 1.2.1.3 Damping Layers with Shunted Piezoelectric Treatments 5
 - 1.2.1.4 Magnetic Constrained Layer Damping (MCLD) 5
 - 1.2.1.5 Damping with Shape Memory Fibers 6
 - 1.2.2 Active Damping 6
 - 1.2.3 Hybrid Damping 7
 - 1.2.3.1 Active Constrained Layer Damping (ACLD) 7
 - 1.2.3.2 Active Piezoelectric Damping Composites (APDC) 7
 - 1.2.3.3 Electromagnetic Damping Composites (EMDC) 8
 - 1.2.3.4 Active Shunted Piezoelectric Networks 8
- 1.3 Summary 9
- References 9

2 Viscoelastic Damping 11

- 2.1 Introduction 11
- 2.2 Classical Models of Viscoelastic Materials 11
 - 2.2.1 Characteristics in the Time Domain 11
 - 2.2.2 Basics for Time Domain Analysis 12
 - 2.2.3 Detailed Time Response of Maxwell and Kelvin–Voigt Models 14
 - 2.2.4 Detailed Time Response of the Poynting–Thomson Model 17
- 2.3 Creep Compliance and Relaxation Modulus 20
 - 2.3.1 Direct Laplace Transformation Approach 22
 - 2.3.2 Approach of Simultaneous Solution of a Linear Set of Equilibrium, Kinematic, and Constitutive Equations 23

2.4	Characteristics of the VEM in the Frequency Domain	25
2.5	Hysteresis and Energy Dissipation Characteristics of Viscoelastic Materials	27
2.5.1	Hysteresis Characteristics	27
2.5.2	Energy Dissipation	28
2.5.3	Loss Factor	28
2.5.3.1	Relationship Between Dissipation and Stored Elastic Energies	28
2.5.3.2	Relationship Between Different Strains	29
2.5.4	Storage Modulus	29
2.6	Fractional Derivative Models of Viscoelastic Materials	32
2.6.1	Basic Building Block of Fractional Derivative Models	32
2.6.2	Basic Fractional Derivative Models	33
2.6.3	Other Common Fractional Derivative Models	36
2.7	Viscoelastic Versus Other Types of Damping Mechanisms	38
2.8	Summary	40
	References	40

3 Characterization of the Properties of Viscoelastic Materials 57

3.1	Introduction	57
3.2	Typical Behavior of Viscoelastic Materials	57
3.3	Frequency Domain Measurement Techniques of the Dynamic Properties of Viscoelastic Material	59
3.3.1	Dynamic, Mechanical, and Thermal Analyzer	60
3.3.2	Oberst Test Beam Method	64
3.3.2.1	Set-Up and Beam Configurations	64
3.3.2.2	Parameter Extraction	66
3.4	Master Curves of Viscoelastic Materials	68
3.4.1	The Principle of Temperature-Frequency Superposition	68
3.4.2	The Use of the Master Curves	71
3.4.3	The Constant Temperature Lines	71
3.5	Time-Domain Measurement Techniques of the Dynamic Properties of Viscoelastic Materials	72
3.5.1	Creep and Relaxation Measurement Methods	73
3.5.1.1	Testing Equipment	73
3.5.1.2	Typical Creep and Relaxation Behavior	74
3.5.1.3	Time-Temperature Superposition	76
3.5.1.4	Boltzmann Superposition Principle	78
3.5.1.5	Relationship Between the Relaxation Modulus and Complex Modulus	80
3.5.1.6	Relationship Between the Creep Compliance and Complex Compliance	81
3.5.1.7	Relationship Between the Creep Compliance and Relaxation Modulus	83
3.5.1.8	Alternative Relationship Between the Creep Compliance and Complex Compliance	83
3.5.1.9	Alternative Relationship Between the Relaxation Modulus and Complex Modulus	84

3.5.1.10	Summary of the Basic Interconversion Relationship	85
3.5.1.11	Practical Issues in Implementation of Interconversion Relationships	86
3.5.2	Split Hopkinson Pressure Bar Method	94
3.5.2.1	Overview	94
3.5.2.2	Theory of 1D SHPB	95
3.5.2.3	Complex Modulus of a VEM from SHPB Measurements	98
3.5.3	Wave Propagation Method	105
3.5.4	Ultrasonic Wave Propagation Method	109
3.5.4.1	Overview	109
3.5.4.2	Theory	109
3.5.4.3	Measurement of the Phase Velocity and Attenuation Factor	111
3.5.4.4	Typical Attenuation Factors	113
3.6	Summary	115
	References	116
4	Viscoelastic Materials	127
4.1	Introduction	127
4.2	Golla–Hughes–McTavish (GHM) Model	127
4.2.1	Motivation of the GHM Model	128
4.2.2	Computation of the Parameters of the GHM Mini-Oscillators	132
4.2.3	On the Structure of the GHM Model	135
4.2.3.1	Other Forms of GHM Structures	135
4.2.3.2	Relaxation Modulus of the GHM Model	135
4.2.4	Structural Finite Element Models of Rods Treated with VEM	137
4.2.4.1	Unconstrained Layer Damping	138
4.2.4.2	Constrained Layer Damping	142
4.3	Structural Finite Element Models of Beams Treated with VEM	150
4.3.1	Degrees of Freedom	150
4.3.2	Basic Kinematic Relationships	151
4.3.3	Stiffness and Mass Matrices of the Beam/VEM Element	152
4.3.4	Equations of Motion of the Beam/VEM Element	153
4.4	Generalized Maxwell Model (GMM)	155
4.4.1	Overview	155
4.4.2	Internal Variable Representation of the GMM	157
4.4.2.1	Single-DOF System	157
4.4.2.2	Multi-Degree of Freedom System	158
4.4.2.3	Condensation of the Internal Degrees of Freedom	159
4.4.2.4	Direct Solution of Coupled Structural and Internal Degrees of Freedom	160
4.5	Augmenting Thermodynamic Field (ATF) Model	163
4.5.1	Overview	163
4.5.2	Equivalent Damping Ratio of the ATF Model	164
4.5.3	Multi-degree of Freedom ATF Model	165
4.5.4	Integration with a Finite Element Model	165
4.6	Fractional Derivative (FD) Models	167
4.6.1	Overview	167

4.6.2	Internal Degrees of Freedom of Fractional Derivative Models	169
4.6.3	Grunwald Approximation of Fractional Derivative	169
4.6.4	Integration Fractional Derivative Approximation with Finite Element	170
4.6.4.1	Viscoelastic Rod	170
4.6.4.2	Beam with Passive Constrained Layer Damping (PCLD) Treatment	172
4.7	Finite Element Modeling of Plates Treated with Passive Constrained Layer Damping	176
4.7.1	Overview	176
4.7.2	The Stress and Strain Characteristics	178
4.7.2.1	The Plate and the Constraining Layers	178
4.7.2.2	The VEM Layer	179
4.7.3	The Potential and Kinetic Energies	179
4.7.4	The Shape Functions	179
4.7.5	The Stiffness Matrices	181
4.7.6	The Mass Matrices	181
4.7.7	The Element and Overall Equations of Motion	182
4.8	Finite Element Modeling of Shells Treated with Passive Constrained Layer Damping	185
4.8.1	Overview	185
4.8.2	Stress–Strain Relationships	186
4.8.2.1	Shell and Constraining Layer	186
4.8.2.2	Viscoelastic Layer	187
4.8.3	Kinetic and Potential Energies	189
4.8.4	The Shape Functions	189
4.8.5	The Stiffness Matrices	189
4.8.6	The Mass Matrices	190
4.8.7	The Element and Overall Equations of Motion	191
4.9	Summary	192
	References	196

5 Finite Element Modeling of Viscoelastic Damping by Modal Strain Energy Method 205

5.1	Introduction	205
5.2	Modal Strain Energy (MSE) Method	205
5.3	Modified Modal Strain Energy (MSE) Methods	210
5.3.1	Weighted Stiffness Matrix Method (WSM)	210
5.3.2	Weighted Storage Modulus Method (WSTM)	211
5.3.3	Improved Reduction System Method (IRS)	211
5.3.4	Low Frequency Approximation Method (LFA)	213
5.4	Summary of Modal Strain Energy Methods	215
5.5	Modal Strain Energy as a Metric for Design of Damping Treatments	215
5.6	Perforated Damping Treatments	220
5.6.1	Overview	220
5.6.2	Finite Element Modeling	222
5.6.2.1	Element Energies	224

5.6.2.2	Topology Optimization of Unconstrained Layer Damping	227
5.6.2.3	Sensitivity Analysis	228
5.7	Summary	234
	References	234
6	Energy Dissipation in Damping Treatments	243
6.1	Introduction	243
6.2	Passive Damping Treatments of Rods	243
6.2.1	Passive Constrained Layer Damping	243
6.2.1.1	Equation of Motion	243
6.2.1.2	Energy Dissipation	247
6.2.2	Passive Unconstrained Layer Damping	248
6.3	Active Constrained Layer Damping Treatments of Rods	251
6.3.1	Equation of Motion	251
6.3.2	Boundary Control Strategy	253
6.3.3	Energy Dissipation	254
6.4	Passive Constrained Layer Damping Treatments of Beams	257
6.4.1	Basic Equations of Damped Beams	257
6.4.2	Bending Energy of Beams	258
6.4.3	Energy Dissipated in Beams with Passive Constrained Layer Damping	258
6.5	Active Constrained Layer Damping Treatments of Beams	264
6.6	Passive and Active Constrained Layer Damping Treatments of Plates	267
6.6.1	Kinematic Relationships	268
6.6.2	Energies of the PCLD and ACLD Treatments	269
6.6.2.1	The Potential Energies	269
6.6.2.2	The Kinetic Energy	269
6.6.2.3	Work Done	269
6.6.3	The Models of the PCLD and ACLD Treatments	270
6.6.4	Boundary Control of Plates with ACLD Treatments	270
6.6.5	Energy Dissipation and Loss Factors of Plates with PCLD and ACLD Treatments	271
6.7	Passive and Active Constrained Layer Damping Treatments of Axi-Symmetric Shells	274
6.7.1	Background	275
6.7.2	The Concept of the Active Constrained Layer Damping	276
6.7.3	Variational Modeling of the Shell/ACLD System	276
6.7.3.1	Main Assumptions of the Model	276
6.7.3.2	Kinematic Relationships	276
6.7.3.3	Stress-Strain Relationships	277
6.7.3.4	Energies of Shell/ACLD System	279
6.7.3.5	The Model	280
6.7.4	Boundary Control Strategy	282
6.7.4.1	Overview	282
6.7.4.2	Control Strategy	282
6.7.4.3	Implementation of the Boundary Control Strategy	283

6.7.4.4	Transverse Compliance and Longitudinal Deflection	283
6.7.5	Energy Dissipated in the ACLD Treatment of an Axi-Symmetric Shell	287
6.8	Summary	288
	References	290

Part II Advanced Damping Treatments 301

7	Vibration Damping of Structures Using Active Constrained Layer Damping	303
7.1	Introduction	303
7.2	Motivation for Using Passive and Active Constrained Layer Damping	303
7.2.1	Base Structure	304
7.2.2	Structure Treated with Unconstrained Passive Layer Damping	306
7.2.3	Structure Treated with Constrained Passive Layer Damping	308
7.2.4	Structure Treated with Active Constrained Passive Layer Damping	311
7.3	Active Constrained Layer Damping for Beams	316
7.3.1	Introduction	316
7.3.2	Concept of Active Constrained Layer Damping	316
7.3.3	Finite Element Modeling of a Beam/ACLD Assembly	318
7.3.3.1	The Model	319
7.3.3.2	Equations of Motion	322
7.3.4	Distributed-Parameter Modeling of a Beam/ACLD Assembly	328
7.3.4.1	Overview	328
7.3.4.2	The Energies and Work Done on the Beam/ACLD Assembly	328
7.3.4.3	The Distributed-Parameter Model	331
7.3.4.4	Globally Stable Boundary Control Strategy	333
7.3.4.5	Implementation of the Globally Stable Boundary Control Strategy	333
7.3.4.6	Response of the Beam/ACLD Assembly	334
7.4	Active Constrained Layer Damping for Plates	336
7.4.1	Control Forces and Moments Generated by the Active Constraining Layer	337
7.4.1.1	The In-Plane Piezoelectric Forces	337
7.4.1.2	The Piezoelectric Moments	338
7.4.1.3	Piezoelectric Sensor	338
7.4.1.4	Control Voltage to Piezoelectric Constraining Layer	339
7.4.2	Equations of Motion	339
7.5	Active Constrained Layer Damping for Shells	344
7.5.1	Control Forces and Moments Generated by the Active Constraining Layer	344
7.5.2	Equations of Motion	344
7.6	Summary	348
	References	351

8 Advanced Damping Treatments	361
8.1	Introduction 361
8.2	Stand-Off Damping Treatments 362
8.2.1	Background of Stand-Off Damping Treatments 362
8.2.2	The Stand-Off Damping Treatments 362
8.2.3	Distributed-Parameter Model of the Stand-Off Layer Damping Treatment 364
8.2.3.1	Kinematic Equations 364
8.2.3.2	Constitutive Equations 365
8.2.4	Distributed Transfer Function Method 369
8.2.5	Finite Element Model 370
8.2.6	Summary 375
8.3	Functionally Graded Damping Treatments 375
8.3.1	Background of Functionally Graded Constrained Layer Damping 375
8.3.2	Concept of Constrained Layer Damping with Functionally Graded Viscoelastic Cores 376
8.3.3	Finite Element Model 377
8.3.3.1	Quasi-Static Model of the Passive Constrained Damping Layer of Plunkett and Lee (1970) 377
8.3.3.2	Dispersion Characteristics of Passive Constrained Damping Layer with Uniform and Functionally Graded Cores 383
8.3.4	Summary 390
8.4	Passive and Active Damping Composite Treatments 390
8.4.1	Passive Composite Damping Treatments 390
8.4.2	Active Composite Damping Treatments 394
8.4.3	Finite Element Modeling of Beam with APDC 396
8.4.3.1	Model and Main Assumptions 396
8.4.3.2	Kinematics 397
8.4.3.3	Degrees of Freedom and Shape Functions 398
8.4.3.4	System Energies 398
8.4.3.5	Equations of Motion 400
8.4.3.6	Control Law 400
8.4.4	Summary 408
8.5	Magnetic Damping Treatments 410
8.5.1	Magnetic Constrained Layer Damping Treatments 410
8.5.2	Analysis of Magnetic Constrained Layer Damping Treatments 412
8.5.2.1	Equation of Motion 412
8.5.2.2	Response of the MCLD Treatment 414
8.5.3	Passive Magnetic Composites 415
8.5.3.1	Concept of Passive Magnetic Composite Treatment 417
8.5.3.2	Finite Element Modeling of Beams with PMC Treatment 417
8.5.4	Summary 430
8.6	Negative Stiffness Composites 430
8.6.1	Motivation to Negative Stiffness Composites 431
8.6.1.1	Sinusoidal Excitation 431

8.6.1.2	Impact Loading	436
8.6.1.3	Magnetic Composite with Negative Stiffness Inclusions	438
8.7	Summary	445
	References	445
9	Vibration Damping with Shunted Piezoelectric Networks	469
9.1	Introduction	469
9.2	Shunted Piezoelectric Patches	469
9.2.1	Basics of Piezoelectricity	469
9.2.1.1	Effect of Electrical Boundary Conditions	471
9.2.1.2	Effect of Mechanical Boundary Conditions	471
9.2.2	Basics of Shunted Piezo-Networks	472
9.2.2.1	Resistive-Shunted Circuit	474
9.2.2.2	Resistive and Inductive Shunted Circuit	475
9.2.2.3	Resistive, Capacitive, and Inductive Shunted Circuit	477
9.2.3	Electronic Synthesis of Inductances and Negative Capacitances	479
9.2.3.1	Synthesis of Inductors	479
9.2.3.2	Synthesis of Negative Capacitances	480
9.2.4	Why Negative Capacitance Is Effective?	480
9.2.5	Effectiveness of the Negative Capacitance from a Control System Perspective	482
9.2.6	Electrical Analogy of Shunted Piezoelectric Networks	485
9.3	Finite Element Modeling of Structures Treated with Shunted Piezo-Networks	487
9.3.1	Equivalent Complex Modulus Approach of Shunted Piezo-Networks	487
9.3.2	Coupled Electromechanical Field Approach of Shunted Piezo-Networks	491
9.4	Active Shunted Piezoelectric Networks	496
9.4.1	Basic Configurations	496
9.4.2	Dynamic Equations	498
9.4.2.1	Short-Circuit Configuration	498
9.4.2.2	Open-Circuit Configuration	498
9.4.2.3	Resistive-Shunted Configuration	498
9.4.3	More on the Resistive Shunting Configuration	498
9.4.4	Open-Circuit to Resistive Shunting (OC-RS) Configuration	500
9.4.4.1	Dynamic Equations	500
9.4.4.2	Switching Between OC and RS Modes	500
9.4.5	Energy Dissipation of Different Shunting Configurations	503
9.4.5.1	Energy Dissipation with Resistive Shunting	503
9.4.5.2	Energy Dissipation with OC-RS Switched Shunting	503
9.5	Multi-Mode Vibration Control with Shunted Piezoelectric Networks	504
9.5.1	Multi-Mode Shunting Approaches	504
9.5.2	Parameters of Behrens et al.'s Multi-Mode Shunting Network	507
9.5.2.1	Components of the Current Flowing Branches	507
9.5.2.2	Components of the Shunting Branches	507
9.6	Summary	510
	References	511

10	Vibration Control with Periodic Structures	523
10.1	Introduction	523
10.2	Basics of Periodic Structures	524
10.2.1	Overview	524
10.2.2	Transfer Matrix Method	525
10.2.2.1	The Transfer Matrix	525
10.2.2.2	Basic Properties of the Transfer Matrix	526
10.3	Filtering Characteristics of Passive Periodic Structures	533
10.3.1	Overview	533
10.3.2	Periodic Rods in Longitudinal Vibrations	534
10.4	Natural Frequencies, Mode Shapes, and Response of Periodic Structures	535
10.4.1	Natural Frequencies and Response	535
10.4.2	Mode Shapes	539
10.5	Active Periodic Structures	541
10.5.1	Modeling of Active Periodic Structures	543
10.5.2	Dynamics of One Cell	543
10.5.2.1	Dynamics of the Passive Sub-Cell	543
10.5.2.2	Dynamics of the Active Sub-Cell	543
10.5.2.3	Dynamics of the Entire Cell	545
10.5.2.4	Dynamics of the Entire Periodic Structure	546
10.6	Localization Characteristics of Passive and Active Aperiodic Structures	549
10.6.1	Overview	549
10.6.2	Localization Factor	550
10.7	Periodic Rod with Periodic Shunted Piezoelectric Patches	559
10.7.1	Transfer Matrix of a Plain Rod Element	559
10.7.2	Transfer Matrix of a Rod/Piezo-Patch Element	560
10.7.3	Transfer Matrix of a Unit Cell	561
10.8	Two-Dimensional Active Periodic Structure	562
10.8.1	Dynamics of Unit Cell	562
10.8.2	Formulation of Phase Constant Surfaces	566
10.8.3	Filtering Characteristics	568
10.9	Periodic Structures with Internal Resonances	569
10.9.1	Dynamics of Conventional Periodic Structure	570
10.9.2	Dynamics of Periodic Structure with Internal Resonances	572
10.9.2.1	Equivalent Mass. Of the Mass-In-Mass Arrangement	572
10.9.2.2	Transfer Matrix of the Mass-In-Mass Arrangement	572
10.10	Summary	578
	References	578
11	Nanoparticle Damping Composites	589
11.1	Introduction	589
11.2	Nanoparticle-Filled Polymer Composites	590
11.2.1	Composites with Unidirectional Inclusions	591
11.2.2	Arbitrarily Oriented Inclusion Composites	599
11.3	Comparisons with Classical Filler Reinforcement Methods	607

11.4	Applications of Carbon Black/Polymer Composites	614
11.4.1	Basic Physical Characteristics	614
11.4.2	Modeling of the Piezo-Resistance of CB/Polymer Composites	617
11.4.3	The Piezo-Resistivity of CB/Polymer Composites	619
11.5	CB/Polymer Composite as a Shunting Resistance of Piezoelectric Layers	620
11.5.1	Finite Element Model	620
11.5.2	Condensed Model of a Unit Cell	624
11.6	Hybrid Composites with Shunted Piezoelectric Particles	629
11.6.1	Composite Description and Assumptions	629
11.6.2	Shunted Piezoelectric Inclusions	631
11.6.3	Typical Performance Characteristics of Hybrid Composites	631
11.7	Summary	636
	References	636
12	Power Flow in Damped Structures	651
12.1	Introduction	651
12.2	Vibrational Power	651
12.2.1	Basic Definitions	651
12.2.2	Relationship to System Energies	652
12.2.3	Basic Characteristics of the Power Flow	653
12.3	Vibrational Power Flow in Beams	656
12.4	Vibrational Power of Plates	661
12.4.1	Basic Equations of Vibrating Plates	661
12.4.2	Power Flow and Structural Intensity	662
12.4.3	Control of the Power Flow and Structural Intensity	668
12.4.4	Power Flow and Structural Intensity for Plates with Passive and Active Constrained Layer Damping Treatments	671
12.5	Power Flow and Structural Intensity for Shells	679
12.6	Summary	682
	References	682
Glossary	699	
Appendix	703	
Index	715	