

Contents

1 Crystals and crystal structures	1
1.1 The nature of the crystalline state	1
1.2 Constructing crystals from close-packed hexagonal layers of atoms	5
1.3 Unit cells of the hcp and ccp structures	6
1.4 Constructing crystals from square layers of atoms	9
1.5 Constructing body-centred cubic crystals	10
1.6 Interstitial structures	11
1.7 Some simple ionic and covalent structures	16
1.8 Representing crystals in projection: crystal plans	17
1.9 Stacking faults and twins	19
1.10 Some more complex crystal structures	24
Exercises	27
2 Two-dimensional patterns, lattices and symmetry	32
2.1 Approaches to the study of crystal structures	32
2.2 Two-dimensional patterns and lattices	33
2.3 Two-dimensional symmetry elements	35
2.4 The five plane lattices	36
2.5 The seventeen plane groups	41
2.6 One-dimensional symmetry: border or frieze patterns	42
2.7 Symmetry, patterns and cultures	44
Exercises	47
3 Bravais lattices and crystal systems	51
3.1 Introduction	51
3.2 The fourteen space (Bravais) lattices	51
3.3 The symmetry of the fourteen Bravais lattices: crystal systems	55
Exercises	58
4 Crystal symmetry, point groups and crystal structures: the external symmetry of crystals	59
4.1 Symmetry and crystal habit	59
4.2 The thirty-two crystal classes	60
4.3 Centres and inversion axes of symmetry	61
4.4 Crystal symmetry and properties	65
4.5 Translational symmetry elements	68
4.6 Space groups	72
4.7 Bravais lattices, motifs and crystal structures	74
Exercises	75

5	Describing lattice planes and directions in crystals: Miller indices and zone axis symbols	76
5.1	Introduction	76
5.2	Indexing lattice directions—zone axis symbols	77
5.3	Indexing lattice planes—Miller indices	78
5.4	Miller indices and zone axis symbols in cubic crystals	81
5.5	Lattice plane spacings, Miller indices and Laue indices	82
5.6	Zones, zone axes and the zone law, the addition rule	84
5.7	Indexing in the trigonal and hexagonal systems: Weber symbols and Miller–Bravais indices	85
5.8	Transforming Miller indices and zone axis symbols	87
5.9	Transformation matrices for trigonal crystals with rhombohedral lattices	90
	Exercises	91
6	The reciprocal lattice	92
6.1	Introduction	92
6.2	Reciprocal lattice vectors	92
6.3	Reciprocal lattice unit cells	94
6.4	Reciprocal lattice cells for cubic crystals	96
6.5	Proofs of some geometrical relationships using reciprocal lattice vectors	97
	Exercises	100
7	The diffraction of light	101
7.1	Introduction	101
7.2	Simple observations on the diffraction of light	103
7.3	The nature of light: coherence, scattering and interference	108
7.4	Analysis of the geometry of diffraction patterns from gratings and nets	111
7.5	The resolving power of optical instruments	118
	Exercises	123
8	X-ray diffraction: the contributions of Max von Laue, W. H. and W. L. Bragg and P. P. Ewald	125
8.1	Introduction	125
8.2	Laue’s analysis of X-ray diffraction: the three Laue equations	126
8.3	Bragg’s analysis of X-ray diffraction: Bragg’s law	128
8.4	Ewald’s synthesis: the reflecting sphere construction	130
	Exercises	134
9	The diffraction of X-rays and electrons	135
9.1	Introduction	135

9.2	The intensities of X-ray diffracted beams: the structure factor equation and its applications	138
9.3	The broadening of diffracted beams: reciprocal lattice points and nodes	145
9.4	Fixed θ , varying λ X-ray techniques: the Laue method	148
9.5	Fixed λ , varying θ X-ray techniques: oscillation, rotation and precession methods	149
9.6	X-ray diffraction from single crystal thin films and multilayers	155
9.7	Electron diffraction in the transmission electron microscope	160
	Exercises	167
10	X-ray and electron diffraction of polycrystalline materials	171
10.1	Introduction	171
10.2	The geometrical basis of polycrystalline (powder) X-ray diffraction techniques	172
10.3	Some applications of X-ray and electron diffraction techniques in polycrystalline materials	181
	Exercises	188
Appendix 1:	Useful components for a crystallography model-building kit and suppliers	191
Appendix 2:	Computer programs in crystallography	193
Appendix 3:	Biographical notes on crystallographers and scientists mentioned in the text	199
Appendix 4:	Some useful crystallographic relationships	214
Appendix 5:	A simple introduction to vectors and complex numbers and their use in crystallography	217
Appendix 6:	Systematic absences (extinctions) in X-ray diffraction and double diffraction in electron diffraction patterns	224
	Answers to exercises	232
	Further reading	239
	Index	243