

Contents

Preface xv

Acknowledgments xvii

Section I: Energy Patterns and Trends 1

Chapter 1: The Energy Imperative and Patterns of Use 3

1.1	Our Energy Dilemma	4
1.2	Historical Perspective: Energy and Civilization	5
1.3	Global Energy Supply and Consumption	7
1.4	U.S. Energy Supply and Consumption	12
1.5	Summary	25

Chapter 2: Energy Sources and Sustainability 29

2.1	Criteria for Sustainable Energy	30
2.2	The Geologic Limits of Fossil Fuels	32
2.3	The Environmental Limits of Fossil Fuels	42
2.4	Opportunities and Limits for Non-fossil Energy	60
2.5	Summary	67

Chapter 3: Energy Futures 71

3.1	Planning and Visioning the Future	72
3.2	Business-as-Usual: Energy Outlook of the U.S. Energy Information Administration and the International Energy Agency	80
3.3	Some Visions of U.S. Energy Future	82
3.4	Visions for Renewable Energy and Efficiency	96
3.5	Carbon Futures and Global Climate Change	104

3.6	The Global Population-Economy-Energy Conundrum	107
3.7	Summary	113

Section II: Energy Fundamentals 115

Chapter 4: Fundamentals of Energy Science 117

4.1	Introduction	117
4.2	Basics of Energy Science	118
4.3	Mechanical Energy	123
4.4	Thermal Energy	128
4.5	Chemical Energy	131
4.6	Solar Energy	140
4.7	Nuclear Energy	150
4.8	Electrical Energy	157
4.9	Summary	161

Chapter 5: Energy Analysis and Life-Cycle Assessment 165

5.1	Some Principles of Life-Cycle Thinking and Sustainability Analysis	166
5.2	Energy Analysis	168
5.3	Energy Monitoring and Energy Audits	181
5.4	Economic Analysis of Energy Systems	186
5.5	Environmental Analysis of Energy and Materials Systems	203
5.6	Summary	211

Section III: Buildings and Energy 213

Chapter 6: Energy Efficiency for Buildings 215

6.1	Residential and Commercial Buildings	216
6.2	Introduction to Heat Loss Calculations	218
6.3	Heat Loss through Windows	227
6.4	Heat Loss through Walls, Ceilings, and Floors	233
6.5	Heat Loss Due to Infiltration	238

6.6	The Overall Heat Loss Factor	241
6.7	Let's Size a Furnace	245
6.8	Annual Cost of Heating	246
6.9	Impacts of Improving Efficiency	252
6.10	Heating, Ventilating, and Air-Conditioning (HVAC) Systems	253
6.11	Software Packages for Building Energy Analysis	260
6.12	Summary	261

Chapter 7: Solar Energy for Buildings **263**

7.1	The Solar Resource	263
7.2	Passive Solar Heating	268
7.3	Cooling Loads	279
7.4	Domestic Water Heating	292
7.5	Solar Collectors for Hot Water	294
7.6	Summary	304

Chapter 8: From Whole Building to Whole Community Energy **307**

8.1	The Evolution toward Green Buildings and Communities	307
8.2	Building Energy Codes and Standards: Toward Whole Building Energy	312
8.3	Whole Building Energy: Electrical Appliances and Lighting in Buildings	317
8.4	Whole Building Life-Cycle: Embodied Energy in Buildings	335
8.5	Green Building Ratings: Helping the Market Advance Whole Building Life-Cycle	339
8.6	Zero-Energy Buildings: Toward Whole Community Energy	351
8.7	Summary	353

Section IV: Sustainable Electricity **357**

<i>Chapter 9: Centralized Electric Power Systems</i>	359	
9.1	Introduction	359
9.2	Electromagnetism: The Technology behind Electric Power	359

9.3	Creating the Modern Electric Utility: Edison, Westinghouse, and Insull	361
9.4	Electric Power Infrastructure: Generation	364
9.5	Economics of Centralized Power Plants	376
9.6	Electric Power Infrastructure: Transmission and Distribution	382
9.7	Evolving Regulation of Electric Power	386
9.8	Summary	392

Chapter 10: Distributed Energy Resources **393**

10.1	Distributed Generation (DG)	393
10.2	Demand-Side Management (DSM)	396
10.3	Electricity Storage	397
10.4	The View from the Customer's Side of the Meter	402
10.5	Heat Engines and the Carnot Efficiency Limit	410
10.6	Combined-Heat-and-Power (CHP) Systems	413
10.7	Microturbines	416
10.8	Reciprocating Engines	418
10.9	Fuel Cells	419
10.10	Stirling Engines	424
10.11	Summary	426

Chapter 11: Photovoltaic Systems **429**

11.1	Introduction to Photovoltaics	429
11.2	Basic Semiconductor Physics	431
11.3	Photovoltaic Efficiency	435
11.4	Photovoltaic Fabrication	440
11.5	From Laboratory Cells to Commercial Modules	443
11.6	Grid-Connected Photovoltaic Systems	443
11.7	Economics of Photovoltaics	450
11.8	Stand-Alone Photovoltaic Systems	455
11.9	Summary	460

Chapter 12: Large-Scale Renewables: Wind and Solar **461**

12.1	Renewable Electric Power Systems	461
12.2	Historical Development of Wind Power	461
12.3	The Wind Resource	463
12.4	Wind Turbine Technology	466
12.5	Energy from the Wind	470
12.6	Economics of Wind Power	477
12.7	Environmental Impacts of Wind	479
12.8	Concentrating Solar Power (CSP) Technologies	482
12.9	Summary	487

Section V: Sustainable Transportation and Land Use **489**

Chapter 13: Transportation Energy and Efficient Vehicles **491**

13.1	Energy Use in Transportation	494
13.2	Highway Passenger Vehicle Technologies, Efficiency, and Emissions	503
13.3	Emerging Vehicle Technologies	519
13.4	Well-to-Wheel Studies of Vehicle Technologies	530
13.5	Summary	537

Chapter 14: Biofuels, Biomass, and Other Alternative Fuels **539**

14.1	Introduction to Alternative Transportation Fuels	540
14.2	Prospects and Potential for Biomass Fuels	543
14.3	Fuel Ethanol	550
14.4	Biodiesel	568
14.5	Other Biomass Energy and Emerging Biotechnologies	574
14.6	Natural Gas and Hydrogen as Transportation Fuels	578
14.7	Summary	581

<i>Chapter 15: Whole Community Energy and Land Use</i>	583
15.1 Community Transportation	584
15.2 Land Use, Transportation, and Energy	591
15.3 Land Use Design and Smart Growth Management	595
15.4 Land Use and Whole Community Energy	606
15.5 Planning for Whole Community Energy	618
15.6 U.S.A. 2040: Land Use and Energy for the Next 100 Million Americans	621
15.7 Summary	625
Section VI: Energy Policy and Planning	627
<i>Chapter 16: Market Transformation to Sustainable Energy</i>	629
16.1 Some Fundamentals of Market Transformation	630
16.2 The Techno-Economic Solutions	633
16.3 The Policy Solutions	642
16.4 The Social Solutions	654
16.5 Summary	660
<i>Chapter 17: Energy Policy</i>	661
17.1 International Perspectives on Energy Policy	661
17.2 U.S. Federal Energy Policy	680
17.3 Summary and Prospects for U.S. Federal Energy Policy	699
<i>Chapter 18: U.S. State and Community Energy Policy and Planning</i>	701
18.1 State Energy Policy	702
18.2 Community Energy Planning and Policy	733
18.3 Summary	755
<i>References and Further Reading</i>	757
<i>Index</i>	775