

Contents

1 Description of the Deformation and Kinematics of a Saturated Porous Medium. Mass Conservation 1

Introduction

1.1	Description of a Saturated Porous Medium	1
1.1.1	Connected and occluded porosity	1
1.1.2	Skeleton and fluid particles	2
1.1.3	Hypothesis of continuity	2
1.2	Description of the Skeleton Deformation	3
1.2.1	Deformation gradient	3
1.2.2	Transport formulae	4
1.2.3	Green–Lagrange strain tensor	5
1.2.4	Infinitesimal transformation. Linearized strain tensor. Plane strain field	6
1.2.5	Infinitesimal transformation and infinitesimal deformation	7
1.3	Kinematics of the Skeleton Deformation	7
1.3.1	Lagrangian and Eulerian description of the kinematics of deformation	7
1.3.2	Lagrangian strain rate tensor	8
1.3.3	Eulerian strain rate tensor	8
1.4	Lagrangian and Eulerian Description of the Motion of Saturated Porous Medium. Relative Flow Vector of Fluid Mass	10
1.5	Particulate Derivative and Material Derivative	11
1.5.1	Particulate derivative of a field with respect to the skeleton	11
1.5.2	Particulate derivative of a field with respect to the fluid	11
1.5.3	Particulate derivative of a volume integral with respect to the skeleton	12
1.5.4	Particulate derivative of a volume integral with respect to the fluid	14
1.5.5	Material derivative of a volume integral	16
1.5.5.1	Definition	16
1.5.5.2	Material derivative of a volume integral and conservation laws	19
1.6	Mass Conservation	19
1.6.1	Existence of the relative flow vector of fluid mass. The tetrahedron lemma	19
1.6.2	Eulerian formulation of mass conservation	20
1.6.3	Lagrangian formulation of mass conservation. Variation in fluid mass content	22

2 Momentum Balance. Stress Tensor 27

Introduction

2.1	Momentum Balance	27
2.1.1	Momentum balance for a saturated porous medium	27
2.1.2	Euler theorem	28
2.1.3	Dynamic theorem	29

2.1.4	Cauchy stress tensor	31
2.1.5	Equation of motion	32
2.1.6	Symmetry of stress tensor	32
2.1.7	Partial stress and intergranular stress concepts	33
2.2	Strain Work Rate. Theorem of Virtual Work Rate	35
2.2.1	Strain work rate	35
2.2.2	Theorem of virtual work rate	36
2.3	Lagrangian Approach of the Momentum Balance	37
2.3.1	Piola–Kirchhoff stress tensor	37
2.3.2	The equation of motion	37
2.3.3	Piola–Lagrange or Boussinesq stress tensor	38
2.4	Kinetic Energy Theorem	38
2.4.1	Material derivative of kinetic energy	38
2.4.2	Effect of tortuosity	39
2.4.3	Kinetic energy theorem	42
	Appendix: The Intergranular Stress Concept	43

3 Thermodynamics of Open Continua

47

	Introduction	47
3.1	Postulate of Local State	48
3.1.1	State variables	48
3.1.2	Postulate of local state for homogeneous systems	48
3.1.3	Local state postulate for continua	49
3.2	The First Law	50
3.2.1	Formulation of the first law	50
3.2.2	The kinetic energy theorem revisited	52
3.2.3	The energy equation, Eulerian approach	53
3.2.4	The energy equation, Lagrangian approach	54
3.3	The Second Law	55
3.3.1	Formulation of the second law	55
3.3.2	The fundamental inequality, Eulerian approach	57
3.3.3	The fundamental inequality, Lagrangian approach	59
3.3.4	Identification of dissipations. Thermal equation	60
3.4	A General Approach to Constitutive Equations of Elementary Systems	62
3.4.1	Non-negativeness of the intrinsic dissipation	62
3.4.2	Equations of state of elementary systems	63
3.4.3	Internal variables and intrinsic dissipation. Necessity of complementary evolution relations	64
3.4.4	The particular case of thermoporoelastic behaviour	65
3.4.5	Hypothesis of normal dissipative mechanism. Standard behaviour	66
3.5	Conduction Laws for Heat and Fluid Mass	69
3.5.1	Hypothesis of the decoupling of dissipations	69
3.5.2	Heat conduction law	70
3.5.3	Fluid mass conduction law	71
3.5.3.1	Formulation of the law	71
3.5.3.2	Fluid particle head. Bernoulli theorem	74
3.5.4	Coupling of conduction laws. Knudsen effect	76
3.6	Adiabatic and Isothermal Evolutions. Undrained and Drained Evolutions	78
3.7	Physical Laws Governing the Evolution of a Saturated Porous Medium	80

4 Linear Thermoporoelastic Behaviour

83

	Introduction	83
4.1	Linearized Fluid State Equations	84

4.2	Linear Thermoporoelastic Behaviour	85
4.2.1	Linearization for the saturated porous medium	86
4.2.2	Constitutive equations in linear thermoporoelasticity	86
4.2.3	Physical meaning of coefficients	87
4.2.3.1	Initial conditions	87
4.2.3.2	Physical meaning of the intrinsic properties of the porous material	87
4.2.3.3	Adiabatic characteristics	89
4.2.4	Effective stress tensor in thermoporoelasticity	89
4.2.5	Reduced potential. Constitutive equation inversion	91
4.2.6	Linear isotropic thermoporoelastic behaviour	95
4.2.7	Stress-free initial state	98
4.3	Linear Thermoporoelastic Behaviour in Infinitesimal Transformations	99
4.3.1	Hypothesis of infinitesimal transformation	99
4.3.2	Stress-free initial state	99
4.3.3	The meaning of the isotropic properties and the principle of their experimental determination. Skempton coefficient	100
4.3.4	Prestressed initial state	103
4.4	Stability of the Thermoporoelastic Material	104
4.4.1	Convex functions	104
4.4.2	Stability of the thermoporoelastic material	106
4.5	Characteristics of the Thermoporoelastic Material and Characteristics of its Constituents	111
4.5.1	Compatibility relations between the properties of the thermoporoelastic material and those of its constituents	112
4.5.2	Stability of the thermoporoelastic material and its constituents	120
4.5.3	Effective stress and the constituents. The Terzaghi assumption	120
4.6	Examples of Thermoporoelastic Anisotropic Materials	123
4.6.1	Orthotropic thermoporoelastic material	124
4.6.2	Transversely isotropic thermoporoelastic material	126

5 Poroplastic Behaviour

129

	Introduction	129
5.1	State Equations of Thermoporoelastoplasticity	130
5.1.1	Plastic strain and plastic porosity	130
5.1.2	State equations	133
5.1.3	Reduced potentials. State equations inversion	135
5.2	General Formulation of Complementary Evolution Relations	136
5.2.1	Intrinsic dissipation. Plastic work rate. Hardening frozen energy	136
5.2.2	Plasticity criterion	138
5.2.2.1	Loading point and initial elasticity domain	138
5.2.2.2	Ideal plastic porous material	138
5.2.2.3	Hardening plastic porous material	139
5.2.2.4	Convexity of elasticity domains	142
5.2.3	Flow rule	143
5.2.3.1	Ideal plastic material	143
5.2.3.2	Hardening plastic porous material. Hardening and softening	145
5.2.4	Effective stress in poroplasticity	151
5.3	The Poroplastic Behaviour in the Hypothesis of Maximal Plastic Work	153
5.3.1	Hypothesis of maximal plastic work	153
5.3.2	Consequences for the plastic criterion and the flow rule	154
5.3.3	Maximal plastic work and plastic effective stress	155
5.3.4	Maximal plastic work and normal dissipative mechanisms	156
5.3.5	Standard material. Associated flow rule	157
5.3.5.1	Ideal plastic standard material	158
5.3.5.2	Hardening standard material	158

5.3.6	Stability and the hypothesis of maximal plastic work	159
5.3.6.1	Sufficient conditions for isothermal stability of poroplastic materials	159
5.3.6.2	Drucker–Ilyushin's stability postulate	163
5.3.7	Extended standard materials	165
5.4	Non-standard Poroplastic Behaviour	168
5.4.1	Non-associated flow rule	168
5.4.2	Non-associated potentials	169
5.4.3	Effective stress and non-associated potentials	171
5.5	Incremental Formulation of Poroelastoplastic Constitutive Equations	172
5.5.1	Incremental formulation for the standard material. Incremental potentials	172
5.5.2	Incremental formulation for the non-standard material	180
5.5.3	Incremental formulation and effective stress	183
5.5.4	Drained and undrained tangent moduli	184
5.6	Usual Models of Isotropic Poroplasticity	185
5.6.1	General formulation of an isotropic poroplastic model	185
5.6.1.1	Isotropic criterion	185
5.6.1.2	Flow rule. Plastic dilatancy factor. Equivalent distortion. Deviatoric normality	187
5.6.1.3	Hardening law	189
5.6.1.4	Thermodynamic restrictions	189
5.6.2	A usual model	190
5.6.2.1	Criteria of von Mises and Drucker–Prager	190
5.6.2.2	Flow rule	192
5.6.2.3	Hardening laws	194
5.6.2.4	Thermodynamic restrictions	196
5.6.3	The Cambridge model	197
5.6.3.1	Burland criterion	197
5.6.3.2	Flow rule	198
5.6.3.3	Plastic void ratio. Hardening rule. Critical state concept	199
5.6.3.4	Thermodynamic restrictions	204
	Appendix: Thermal Hardening	206

6 Hereditary Behaviours 209

	Introduction	209
6.1	Viscous Strain and Viscous Porosity	209
6.1.1	Relaxed state	209
6.1.2	Viscous strain and viscous porosity	209
6.2	Zener Poroviscoelastic Model	211
6.2.1	State equations	211
6.2.2	Complementary evolution laws. Zener material	213
6.2.3	Instantaneous and relaxed characteristics. Frozen energy	214
6.2.4	Sufficient conditions of stability of a relaxed equilibrium state	216
6.2.5	Creep and relaxation function for the isotropic Zener material	217
6.2.5.1	Functional writing of constitutive equations	217
6.2.5.2	Creep and relaxation functions	220
6.2.5.3	Functional writing of free energy and intrinsic viscous dissipation	223
6.3	Linear Poroviscoelastic Behaviour	226
6.3.1	Functional formulation	226
6.3.1.1	The general case	226
6.3.1.2	The isotropic case	228
6.3.1.3	Compatibility relations between poroviscoelastic properties and constituent properties	230
6.3.2	Effective stress in poroviscoelasticity	231

6.3.3 Thermodynamic restrictions	232
6.3.4 Ageing material	237
6.4 Poroviscoplastic Behaviour	239
6.4.1 Generalities	239
6.4.2 State equations	241
6.4.3 General formulation of complementary evolution laws. Effective stress in poroviscoplasticity	242
6.4.4 Standard poroviscoplastic materials	243
6.4.4.1 Standard ideal poroviscoplastic material	243
6.4.4.2 Standard hardening poroviscoplastic material	243
6.4.4.3 Extended standard poroviscoplastic material	244
6.4.4.4 Stability of standard poroviscoplastic material	244
6.4.5 Poroviscoplastic models	245
6.4.5.1 Usual models	245
6.4.5.2 Poroviscoplastic extension of poroplastic models	246
7 Surfaces of Discontinuity	249
Introduction	249
7.1 Kinematics of Discontinuities	249
7.1.1 Displacement speed and various wavespeeds	249
7.1.2 Geometrical and kinematical conditions of compatibility	252
7.1.2.1 Hadamard's relations	252
7.1.2.2 Application to first and second-order discontinuities. Polarization vector. Longitudinal and transverse waves	253
7.2 Conservations Laws and Acceleration Waves	255
7.2.1 Hypothesis of small movements	255
7.2.2 Mass conservation	256
7.2.3 Momentum balance	257
7.2.4 Propagation of acceleration waves	257
7.2.4.1 The undrained acoustic tensor	257
7.2.4.2 Polarization vector and wavespeeds	258
7.2.4.3 Equation of the wavefront	260
7.3 Wave Propagation in Thermoporoelastic Media	260
7.3.1 The isotropic homogeneous case	261
7.3.1.1 Equations of the problem	261
7.3.1.2 Acceleration waves. Shear and compression waves. Thermal waves	262
7.3.1.3 Shock waves	269
7.3.2 The general case	270
7.4 Wave Propagation in Poroplastic Media	271
7.4.1 Plastic acceleration wave	271
7.4.2 Elastic unloading wave. Plastic loading wave	273
7.4.3 Remark on plastic shock waves	274
7.5 Localization of Deformation in Poroelastoplasticity	274
7.5.1 Velocity discontinuity in ideal plasticity	274
7.5.1.1 Generalities	274
7.5.1.2 Application	276
7.5.2 Localization of deformation for hardening materials	280
7.5.2.1 Generalities	280
7.5.2.2 Critical hardening modulus	283
7.6 Wave Propagation in Poroviscoelastic Media	288
7.6.1 Acceleration wave. Complex modulus	288
7.6.2 Shock waves	291
7.7 The Porous Fracture	293

8 Linearized Quasistatic Evolutions in Thermoporoelasticity. Direct Methods of Resolution	299
Introduction	299
8.1 The Hypothesis of Small Perturbations	299
8.2 Linearized Formulation of an Evolution Quasistatic Problem	300
8.2.1 Field equations	301
8.2.1.1 Momentum equation	301
8.2.1.2 The equation of fluid diffusion	301
8.2.1.3 The equation of heat diffusion	302
8.2.2 Boundary and initial conditions	303
8.2.3 Constitutive equations	304
8.3 The Displacement Method	305
8.3.1 The Navier equation	305
8.3.2 The equation of fluid diffusion	305
8.3.3 The equation of heat diffusion	305
8.3.4 Solving a problem by the displacement method	306
8.4 The Stress Method	306
8.4.1 The Beltrami–Michell equation	306
8.4.2 The equation of fluid diffusion	308
8.4.3 The equation of heat diffusion	308
8.4.4 Solving a problem by the stress method	308
8.5 The Diffusion Process Analysed	308
8.5.1 Coupling of entropy and fluid mass diffusion. The consolidation equation	308
8.5.2 Short- and long-term approximations. Characteristic length and characteristic time of diffusion	310
8.6 The Superposition Theorem	314
8.7 Applications	314
8.7.1 Drilling of a well	314
8.7.1.1 The problem	314
8.7.1.2 Analytical solution	316
8.7.2 The case of a spherical cavity	322
8.7.2.1 The problem	322
8.7.2.2 Analytical solution	323
8.7.3 Consolidation of a soil layer	327
8.7.3.1 The problem	327
8.7.3.2 Analytical solution	328
8.7.4 Line injection of a fluid in a reservoir	335
8.7.4.1 The problem	335
8.7.4.2 Analytical solution	336
9 Quasistatic Evolutions. Uniqueness of Solution. Numerical Methods of Resolution.	341
Introduction	341
9.1 Formulation of an Evolution Problem	341
9.2 Theorem of Virtual Work Rate with Two Fields	343
9.3 Theorems of Uniqueness of Solution	346
9.3.1 Uniqueness theorem in poroelasticity	346
9.3.2 Uniqueness theorems in poroelastoplasticity	347
9.3.2.1 Ideal plastic material	347
9.3.2.2 Hardening plastic material	349
9.3.3 Uniqueness theorem in linear poroviscoelasticity	353
9.3.4 Uniqueness theorem in poroviscoplasticity	355
9.3.4.1 Ideal poroviscoplastic material	355
9.3.4.2 Hardening poroviscoplastic material	355

9.4	Principle of the Numerical Solving Method	356
9.4.1	Time discretization	357
9.4.1.1	Time discretization of field equations and boundary conditions	357
9.4.1.2	Kinematically and statically admissible fields in finite discretization	357
9.4.1.3	Theorems of virtual work for finite increments	358
9.4.1.4	Discretization of conduction laws and constitutive equations. Explicit and implicit procedures	360
9.4.2	Variational formulation of the time-discretized problem	363
9.4.2.1	Variational formulation in poroelasticity	363
9.4.2.2	Variational formulation in poroplasticity	368
9.4.2.3	Variational formulation for hereditary behaviours	377
9.4.3	Spatial discretization	380
Appendix: Existence Theorem of the Solution of an Evolution Problem		381

10 Reactive Partially Saturated Porous Media 385

Introduction		385
10.1	Description of the Deformation and Kinematics	385
10.1.1	Hypothesis of continuity	385
10.1.2	Deformation and kinematics	386
10.2	Mass Conservation	386
10.2.1	Mass conservation for non-reactive media	387
10.2.2	Mass conservation with phase change	387
10.2.2.1	Double porous network	387
10.2.2.2	Liquid–vapour phase change	388
10.2.2.3	Matrix dissolution	388
10.2.2.4	Liquid–solid phase change	389
10.2.3	Mass conservation in the case of chemical reactions	389
10.3	Momentum Balance	390
10.3.1	Stress tensor	390
10.3.2	Momentum equation	391
10.4	Thermodynamics of Reactive Partially Saturated Porous Media	391
10.4.1	The first law. The equation of energy	391
10.4.2	The second law	391
10.4.3	The fundamental inequality	391
10.4.3.1	The fundamental inequality for non-reactive media	392
10.4.3.2	The fundamental inequality with phase change	392
10.4.3.3	The fundamental inequality with chemical reactions	392
10.4.4	Identification of dissipations. The thermal equation	393
10.4.5	Constitutive equations of elementary systems	393
10.4.5.1	Non-negativeness of the intrinsic dissipation	393
10.4.5.2	State equations and complementary evolution relations	394
10.4.6	Laws of phase change	395
10.4.6.1	Double porous network	395
10.4.6.2	Liquid–vapour phase change	395
10.4.6.3	Matrix dissolution	397
10.4.6.4	Liquid–solid phase change	398
10.4.7	Kinetics of chemical reactions	399
10.4.8	Closed reactive porous media	400
10.4.9	Conduction laws	401
10.4.9.1	Fourier law	402
10.4.9.2	The generalized Darcy law	402
10.4.9.3	Fick's law	403
10.4.9.4	Soret–Dufour effect	405
10.5	Thermoporoelastic Behaviour	406
10.5.1	Linear model	406

xii CONTENTS

10.5.2	Non-linear model	408
10.5.3	Properties of the thermoporoelastic material and properties of its constituents	410
10.5.3.1	Saturating fluids without mixture	411
10.5.3.2	Saturating fluids with ideal mixture	412
10.5.4	The effective stress assumption for partially saturated porous media	416
10.5.5	Porous media partially saturated by a liquid and a mixture	417
10.5.5.1	Constitutive equations. Capillary pressure	417
10.5.5.2	Effective stress assumption. Capillary pressure curve	420
10.5.5.3	Capillary desorption. Adsorption isotherms	424
10.5.6	Reduced potential	426
10.5.7	Thermodynamic restrictions	427
10.6	Shrinking, Swelling and Creeping Materials as Reactive Partially Saturated Porous Materials	430
10.6.1	Drying shrinkage	430
10.6.2	Swelling through osmosis	432
10.6.3	Swelling and shrinkage due to chemical reactions	435
10.6.4	Creep due to chemical reactions	436
	References	443
	Index	451