

CONTENTS

Preface	xix
1. Basic concepts	1
1.1 Introduction	1
1.2 Prestressed concrete	1
1.3 Economics of prestressed concrete	4
2. Technology of prestressing	5
2.1 Methods of prestressing	5
2.2 Pre-tensioning	5
2.2.1 Debonding/blanketing of strands	10
2.2.2 Deflecting/draping/harping of strands	11
2.2.3 Loss of prestress at transfer	12
2.2.4 Transmission length	12
2.2.4.1 Example of calculation of transmission length	14
2.3 Post-tensioning	15
2.3.1 Post-tensioning anchors	18
2.3.2 Loss of prestress at transfer	21
2.3.3 External prestressing	21
2.3.4 Unbonded systems	22
3. Material properties	25
3.1 Properties of concrete	25
3.2 Compressive strength of concrete	25
3.3 Tensile strength of concrete	26
3.4 Deformational properties	27
3.4.1 Elastic moduli	27
3.4.2 Creep coefficient	27
3.4.3 Shrinkage	31
3.5 Stress-strain relationship	33
3.5.1 Parabolic-rectangular relationship	34
3.5.2 Bi-linear relationship	35
3.5.3 Confined concrete	35
3.6 Permissible stresses in concrete	36
3.7 Prestressing steel	37
3.8 Relaxation	39
3.9 Maximum Stress at Jacking	40
3.10 Long-term loss of prestress	40
3.11 References to Eurocode 2 clauses	40

4. Serviceability limit state design of pre-tensioned beams	43
4.1 Design of prestressed concrete structure	43
4.2 Beam design based on engineers' theory of bending	43
4.2.1 Sign convention	44
4.2.2 Example of beam designed based on engineer's theory of bending	44
4.3 Development of SLS design equations	47
4.3.1 Example of SLS design equations	49
4.3.2 Magnel diagram	50
4.3.3 Choice of prestress and eccentricity	52
4.3.4 Stress check	53
4.3.5 Debonding	54
4.3.6 Choice of prestress and eccentricity at different sections	56
4.4 Initial sizing of section	56
4.4.1 Example of preliminary sizing	58
4.5 Composite beam section	59
4.5.1 Magnel equations for composite beam	60
4.5.2 Shrinkage stress calculation	61
4.5.3 Example of shrinkage stress calculation	64
4.5.4 Magnel diagrams for a composite beam	67
4.5.5 Choice of prestress and eccentricity at different sections	70
4.6 Cracking	71
4.7 Thermal stress calculation	71
4.7.1 Heating	72
4.7.2 Cooling	73
4.7.3 Calculation of stresses due to thermal gradients	73
4.7.4 Example of thermal stress calculation	74
4.7.4.1 Thermal stress calculation: Heating	75
4.7.4.2 Thermal stress calculation: Cooling	78
4.8 Detailing	79
4.9 References to Eurocode 1 and Eurocode 2 clauses	80
5. Bonded post-tensioned structures	81
5.1 Post-tensioned beams	81
5.2 Cable profile in a post-tensioned beam	81
5.2.1 Example of permitted cable zone	82
5.2.1.1 Magnel equations	85
5.2.1.2 Determination of maximum eccentricity	85
5.2.1.3 Determination of cable zone	87
5.2.1.4 Detailing of post-tensioned tendons	88
5.3 Concept of equivalent loads	88
5.3.1 General equation for equivalent loads	90
5.3.2 General equation for distributed loads for a parabolic profile	91

5.3.3	Drape of the cable	93
5.4	Load balancing	94
5.5	Reference to Eurocode 2 clauses	94
6.	Statically indeterminate post-tensioned structures	95
6.1	Introduction	95
6.1.1	Primary and secondary moments	95
6.1.2	Prestressing of a propped cantilever	97
6.2	Analysis to determine the moment distribution due to prestress	98
6.2.1	Equivalent loads for a cable profile of a single parabola	99
6.2.2	General equation for equivalent loads for a cable profile consisting of three parabolic segments	100
6.2.3	General equation for equivalent loads for a cable profile consisting of four parabolic segments	105
6.2.3.1	Alternative profile consisting of three parabolas instead of four parabolas	111
6.2.3.2	Alternative profile consisting of two parabolas instead of three parabolas	114
6.2.4	Loss of prestress and equivalent loads	116
6.3	Fixed end moments	116
6.3.1	Fixed end moments for three-parabola cable profile	117
6.3.2	Fixed end moments for four-parabola cable profile	118
6.4	Analysis of a continuous beam for moment distribution due to prestress	118
6.4.1	Distribution of shear force	121
6.5	Cable profile consisting of linear variation between supports	122
6.6	Determination of prestress and cable profile:	
6.6.1	Example of a continuous bridge beam	122
6.6.1	Analysis of the bridge	123
6.6.2	Determination of prestress and eccentricity	126
6.6.3	Refined analysis due to equivalent loads	128
6.6.3.1	Fixed end moments for three parabola cable profile	129
6.6.3.2	Fixed end moments for four parabola cable profile	129
6.6.3.3	Moments at supports for the cable profile	129
6.6.3.4	Choice of prestress at service	129
6.6.3.5	Stress check at transfer and service	132
6.7	Concordant cable profile	132
6.8	Choice of tendon size and location of tendons	132
6.9	Equivalent loads and shift in the centroidal axis	134
6.9.1	Shift in the centroidal axis in box girders	136
6.10	Equivalent loads and variable second moment of area	136
6.11	Thermal stress analysis and continuous structures	139

6.11.1	Thermal stress calculation: heating	139
6.11.2	Thermal stress calculation: cooling	142
6.12	Reduction of moment over support in continuous beams	144
6.13	References to Eurocode 2 clauses	145
7.	Ultimate bending strength calculations	147
7.1	Introduction	147
7.2	Stress distribution at different stages of loading	147
7.3	Stress - strain relationship for concrete	149
7.4	Rectangular stress block in bending strength calculations	149
7.5	Stress - strain relationship for steel	150
7.6	Strain and stress in steel	150
7.6.1	Prestress and pre-strain in steel	150
7.6.2	Strain due to bending in steel	151
7.6.3	Total strain and stress in steel	151
7.7	The strain compatibility method	151
7.8	Properties of a trapezium	152
7.9	Ultimate moment calculation of a bridge beam	152
7.10	Ultimate moment calculation of a composite bridge beam	157
7.11	Use of additional unstressed steel	162
7.12	Stress-strain relationship for unstressed reinforcing steel	163
7.13	Example of ultimate moment calculation with stressed and unstressed steels	164
7.14	Calculation of M_u using tabular values	167
7.15	Calculation of M_u for statically indeterminate beams	169
7.16	Reference to Eurocode 2 clauses	170
8.	Analysis of cracked sections	171
8.1	Introduction	171
8.2	Cracked section analysis	171
8.3	Cracked section analysis of a double T-beam	172
8.3.1	Stress - strain relationship for concrete	174
8.3.2	Stress - strain relationship for steel	174
8.3.3	Cracked section analysis	174
8.4	Partially prestressed beam	180
8.5	Composite beam	183
8.5.1	Magnel diagram for composite beam	184
9.	Ultimate shear and torsional strength calculations	193
9.1	Introduction	193
9.2	Shear capacity of a section without shear reinforcement and uncracked in flexure	195

9.2.1	Example of calculation of shear capacity of a section without shear reinforcement and uncracked in bending	197
9.3	Checking for start of cracked section	198
9.4	Shear capacity of a section without shear reinforcement and cracked in bending	198
9.4.1	Example of calculation of shear capacity of a section without shear reinforcement and cracked in bending	199
9.5	Design of shear reinforcement	200
9.5.1	Derivation of equations (9.7) and (9.11)	201
9.5.2	Procedure for shear link design	203
9.5.3	Design of a beam not needing design shear reinforcement	203
9.5.4	Design of a beam needing design shear reinforcement	204
9.6	Shear capacity of a composite beam	207
9.7	Effective web width in the presence of ducts	212
9.8	Interface shear between web and flange in T-sections	213
9.8.1	Example of reinforcement calculation for interface shear between web and flange	214
9.9	Interface shear between precast beam and cast in-situ slab	215
9.10	Design for torsion	219
9.10.1	Spacing of torsion reinforcement	227
9.11	Design for combined shear force and torsion	227
9.12	Warping torsion	228
9.13	References to Eurocode 2 clauses	228
10.	Calculation of crack widths	229
10.1	Introduction	229
10.2	Exposure classes	229
10.3	Recommended values of maximum crack width	229
10.4	Minimum steel areas	231
10.4.1	Example of minimum steel area calculation	233
10.5	Calculation of crack width, w_k	234
10.5.1	Crack spacing, S_r, max	235
10.5.2	Example of crack width and spacing calculation	235
10.6	Example of a partially prestressed beam	236
10.6.1	Example of minimum steel area calculation	236
10.6.2	Example of width and spacing of crack	237
10.7	Control of cracking without direct calculation	238
10.8	References to Eurocode 2 clauses	239
11.	Loss of prestress	241
11.1	Introduction	241
11.2	Immediate loss of prestress	241

11.2.1	Elastic loss in pre-tensioned beams	241
11.2.1.1	Example of elastic loss calculation	243
11.2.2	Elastic loss in post-tensioned beams	244
11.2.3	Loss of prestress due to friction and wobble	245
11.2.3.1	Derivation of loss of prestress due to friction	245
11.2.3.2	Example of calculation of loss of prestress due to friction and wobble	247
11.2.3.3	Calculation of θ for different profiles	248
11.2.4	Loss due to draw-in of wedges	252
11.2.4.1	Example of loss of prestress due to draw-in	254
11.3	Loss of prestress due to creep, shrinkage and relaxation	255
11.3.1	Example of final loss calculation	257
11.4	References to Eurocode 2 clauses	259

12.	Design of slabs	261
12.1	Introduction	261
12.2	Typical beam and slab depths	261
12.2.1	Effective span of slabs for different support conditions	262
12.3	One-way spanning slabs	262
12.3.1	Design of a one-way spanning slab	263
12.3.2	Analysis for applied loading	264
12.3.3	Choice of prestress	266
12.3.4	Calculation of losses	267
12.3.5	Calculation of correct equivalent loads	269
12.3.6	Calculation of moment distribution at service	270
12.3.7	Calculation of stress distribution at service	271
12.3.8	Calculation of stress distribution at transfer	272
12.4	Edge-supported two-way spanning slab	272
12.4.1	Design of a two-way spanning slab	273
12.5	Flat slabs	276
12.6	Methods of analysis of flat slabs	279
12.7	Example of the design of flat slab	283
12.8	Finite element analysis of flat slab	283
12.8.1	Results of analysis for dead load	284
12.8.2	Results of analysis for dead plus live load pattern 1	288
12.8.3	Results of analysis for dead plus live load pattern 2	294
12.8.4	Results of analysis for dead plus live load pattern 3	298
12.8.5	Results of analysis for dead plus live load pattern 4	303
12.9	Finite element analysis of a strip of flat slab	307
12.9.1	Results of analysis for dead load	309
12.9.2	Results of analysis for dead plus live load pattern 1	312
12.9.3	Results of analysis for dead plus live load pattern 2	315
12.9.4	Results of analysis for dead plus live load pattern 3	318
12.9.5	Results of analysis for dead plus live load pattern 4	321

12.10	Comparison between the results of analysis of full slab and a strip of slab	324
12.11	Eurocode 2 recommendations for equivalent frame analysis	324
12.12	Grillage analysis for irregular column layout	327
12.13	Example of design of flat slab-frame	327
12.13.1	Results of analysis of slab-frame model	329
12.13.2	Moment distribution due to prestress	329
12.13.3	Cable profile	330
12.14	Calculation of loss of prestress	331
12.14.1	Calculation of loss due to friction and wobble per cable	331
12.14.2	Calculation of loss due to wedge draw-in	333
12.14.3	Calculation of prestress at service	333
12.14.4	Determination of number of cables	333
12.15	Fixed end moments due patch loads and concentrated force and couple	334
12.16	Equivalent loads and fixed end moments	334
12.16.1	Equivalent loads and fixed end moments at transfer	334
12.16.2	Equivalent loads and fixed end moments at service	337
12.16.3	Moment distribution due to equivalent loads at transfer	338
12.16.4	Moment distribution due to equivalent loads at service	340
12.16.5	Moment distribution due to equivalent loads and external loads at transfer	342
12.16.6	Moment distribution due to equivalent loads and external loads at service	342
12.16.7	Stress distribution in the slab at transfer and service stages	343
12.16.8	Moment in end columns	348
12.17	Ultimate limit state moment calculations	348
12.17.1	Moment envelopes	349
12.17.2	Parasitic moments	350
12.17.3	Parasitic moments: example	350
12.17.4	Ultimate moment capacity	351
12.18	Detailing of steel	353
12.19	Eurocode 2 recommendations for detailing of steel	357
12.20	References to Eurocode 2 clauses	357
13.	Design for punching shear	359
13.1	Punching shear failure	359
13.2	Punching shear stress calculation	359
13.3	Critical shear perimeter	361
13.4	Effect of holes near the column	363
13.4.1	Example	363
13.5	Columns with capitals	364

13.6	Calculation of punching shear stress v_{ED} under the action of a moment	367
13.7	Punching shear stress under shear force and moment acting simultaneously	369
13.7.1	Special cases of shear force and moment acting together	370
13.8	Punching shear stress checks	371
13.9	Example of punching shear capacity design	373
13.10	Reference to Eurocode 2 clauses	376
14.	Loading on buildings	377
14.1	Introduction	377
14.2	Limit states	378
14.3	Classification of actions	379
14.4	Characteristic values of actions	379
14.5	Design values of actions	380
14.6	Combination of actions	381
14.6.1	Combination of actions for ULS	381
14.6.2	Values of γ factors	382
14.6.3	Examples of the use of γ factors	383
14.7	Combination of actions for SLS	389
14.8	References to Eurocode 1 clauses	390
15.	Loading on bridges	393
15.1	Introduction	393
15.2	Notional Lanes	393
15.3	Load models	394
15.3.1	Load Model 1	394
15.3.2	Load Model 2	395
15.3.3	Load Model 3	395
15.3.4	Load Model 4	396
15.4	Dispersal of concentrated load	396
15.5	Horizontal forces	396
15.5.1	Breaking forces	396
15.5.2	Centrifugal forces	397
15.6	Loads on footways, cycle tracks and foot bridges	397
15.7	Groups of traffic loads	398
15.8	Combinations of actions for ULS	398
15.9	Values of γ factors	399
15.10	Values of ψ factors for road bridges	399
15.11	Combinations of actions for SLS	399
15.12	References to Eurocode 1 clauses	400

16. Analysis and design of bridge decks	401
16.1 Introduction	401
16.1.1 Balanced Cantilever Construction	402
16.2 Methods of analysis	405
16.3 Grillage analysis	407
16.3.1 Aspects of behaviour ignored in grillage analysis	407
16.3.2 Edge stiffening	409
16.4 Torsional constant	409
16.4.1 Torsional constant of solid sections	411
16.4.2 Torsional constant of thin-walled closed hollow sections	411
16.5 Example of analysis of a beam and slab deck	412
16.5.1 Bending properties of precast beam	412
16.5.2 Section properties of interior composite beam	414
16.5.3 Section properties of end composite beam	416
16.5.4 Torsion constant for composite beam	416
16.5.5 Alternative expressions for approximate value of J for rectangular cross sections	418
16.5.6 Section properties of transverse beams	418
16.5.7 Material properties	419
16.5.8 Calculation of live loads and bending moment distribution in beam elements: SLS	419
16.6 Stresses due to shrinkage of slab	426
16.7 Thermal stresses in the composite beam	426
16.7.1 Thermal stresses: heating	427
16.7.2 Thermal stresses: cooling	429
16.8 Stress distribution at SLS due to external loads	432
16.9 Magnel diagrams	433
16.9.1 Stress checks	437
16.10 Calculation of live loads and bending moment distribution in beam elements: ULS	438
16.11 Self-weight moments	443
16.12 Ultimate moment capacity: Mid-span section	443
16.13 Ultimate shear force	447
16.13.1 Analysis to determine maximum shear force along the span: Cases 1 – 4	448
16.13.2 Analysis to determine maximum shear force along the span: Cases 5 – 8	452
16.13.3 Summary of results	453
16.13.4 Design of shear reinforcement	454
16.14 Design of a post-tensioned box girder bridge	459
16.14.1 Calculation of moments at SLS	461
16.14.2 Thermal stresses: Heating	464
16.14.3 Thermal stresses: Cooling	466
16.14.4 Determination of prestress and eccentricity	467
16.14.5 Stress calculation at SLS	471

16.14.6 Calculation of moments at ULS	474
16.14.7 Calculation of moment capacity at ULS	477
16.14.8 Calculation of shear force at ULS	479
16.14.9 Calculation of twisting moment at ULS	481
16.14.10 Design of shear and torsional reinforcement	483
16.14.11 Longitudinal reinforcement to resist torsion	487
16.14.12 Stress analysis of the deck	487
16.15 Eurocode 2 rules for reinforcement at anchorages	489
16.16 External and internal tendons: A comparison	491
16.17 References to Eurocode 2 clauses	491
17. Lower bound approaches to design at ultimate limit state	493
17.1 Introduction	493
17.2 Theory of Plasticity	493
17.3 In-plane stresses	494
17.3.1 Examples of reinforcement calculations	497
17.3.2 Presence of prestressing cables	503
17.4 Designs for a combination of in-plane and flexural forces	504
17.4.1 Example of design for a combination of in-plane and flexural forces	507
17.5 Criterion for cracking	508
17.6 Out-of-plane shear	510
17.7 Strut and tie method of design	511
17.7.1 B and D Regions	511
17.7.2 Saint Venant's principle	512
17.7.3 An example of strut-tie modelling	514
17.7.4 Design of struts	515
17.7.5 Types of nodal zones	517
17.7.6 Correct layout of struts and ties	520
17.7.6.1 Correct layout of struts and ties: deep beam	520
17.7.6.2 Correct layout of struts and ties: corbel	521
17.7.6.2.1 Code recommendation for design of corbel	523
17.7.6.3 Correct layout of struts and ties: half-joint	525
17.7.6.4 Correct layout of struts and ties: end-block	527
17.7.6.5 Reinforcement at frame corners	529
17.8 Reference to Eurocode 2 clauses	531
18. Design for earthquake resistance	533
18.1 Introduction	533
18.2 Ductility	535
18.3 Types of structural systems	536

18.4	Behaviour factor, q	538
18.5	Ductility classes	540
18.6	A brief introduction to structural dynamics	540
18.6.1	Single-degree-of-freedom system	540
18.6.2	Multi-degree-of-freedom system	542
18.6.3	Response to an acceleration of the base	544
18.6.4	Vibration of an undamped free multi-degree-of-freedom system	545
18.6.5	Calculation of eigenvalues	545
18.6.6	Eigenvectors of $[K - \omega^2 M]$	547
18.6.7	Properties of eigenvectors	548
18.6.8	Mode superposition: undamped forced response	549
18.6.9	Mode superposition: damped forced response	550
18.6.10	Mass participation factors and effective mass	550
18.6.10.1	Mass participation factors: Example	551
18.7	Response acceleration spectrum	551
18.7.1	Design elastic response acceleration spectrum	552
18.7.2	Elastic design spectrum: Eurocode 8	553
18.8	Methods of analysis	553
18.8.1	Lateral force method of analysis	554
18.8.1.1	Lateral force method: example	554
18.8.2	Modal response spectrum method of analysis	556
18.8.2.1	Displacement spectrum	557
18.8.2.2	Combining modal values: SRSS and CQC rules	558
18.8.2.3	Rayleigh damping	558
18.8.2.4	'Resultant' storey level displacements	559
18.8.2.5	'Resultant' storey level forces	559
18.9	Combination of seismic action with other actions	560
18.10	Basic principles of conceptual design	561
18.11	Detailing for local ductility: beams	564
18.12	Detailing for local ductility: columns	566
18.13	Design shear force in beams and columns	569
18.14	Design provisions for ductile walls	570
18.16	Reference to Eurocode 8 clauses	571
19.	Miscellaneous topics	573
19.1	Introduction	573
19.2	Unbonded design	573
19.3	Design of a post-tensioned box girder	573
19.3.1	Calculation of live loadings at SLS	573
19.3.2	Calculation of total loads at SLS	574
19.3.3	Calculation of bending moments at SLS	574
19.3.4	Bending stresses at SLS	575
19.3.5	Thermal stresses: heating and cooling	575

19.4	Determination of prestress	575
19.5	Cracking moment	578
19.6	Ultimate moment capacity	579
19.7	Ultimate shear capacity	580
19.8	Calculation of deflection	582
19.9	References to Eurocode 2 clauses	585
20.	References	587
Index		591